1. Neuroscience
Download icon

Multimodal sensory integration in single cerebellar granule cells in vivo

  1. Taro Ishikawa
  2. Misa Shimuta
  3. Michael Häusser  Is a corresponding author
  1. University College London, United Kingdom
Research Advance
  • Cited 57
  • Annotations
Cite this article as: eLife 2015;4:e12916 doi: 10.7554/eLife.12916

Abstract

The mammalian cerebellum is a highly multimodal structure, receiving inputs from multiple sensory modalities and integrating them during complex sensorimotor coordination tasks. Previously, using cell-type-specific anatomical projection mapping, it was shown that multimodal pathways converge onto individual cerebellar granule cells (Huang et al., 2013). Here we directly measure synaptic currents using in vivo patch-clamp recordings and confirm that a subset of single granule cells receive convergent functional multimodal (somatosensory, auditory, and visual) inputs via separate mossy fibers. Furthermore, we show that the integration of multimodal signals by granule cells can enhance action potential output. These recordings directly demonstrate functional convergence of multimodal signals onto single granule cells.

Article and author information

Author details

  1. Taro Ishikawa

    Wolfson Institute for Biomedical Research, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  2. Misa Shimuta

    Wolfson Institute for Biomedical Research, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Michael Häusser

    Wolfson Institute for Biomedical Research, Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
    For correspondence
    m.hausser@ucl.ac.uk
    Competing interests
    Michael Häusser, Reviewing editor, eLife.

Ethics

Animal experimentation: This study was performed in strict accordance with UK Home Office regulations and under approval and supervision of the Animal Experiment Committee of Jikei University. Experiments were carried out under Project Licence 70/7833 issued by the Home Office, which was issued following local ethical review, and under the relevant Personal Licences issued by the Home Office. All surgery was performed under isoflurane anesthesia, and every effort was made to minimize suffering.

Reviewing Editor

  1. Eve Marder, Brandeis University, United States

Publication history

  1. Received: November 9, 2015
  2. Accepted: December 21, 2015
  3. Accepted Manuscript published: December 29, 2015 (version 1)
  4. Version of Record published: March 7, 2016 (version 2)

Copyright

© 2015, Ishikawa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 57
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Henry WP Dalgleish et al.
    Research Article Updated

    Many theories of brain function propose that activity in sparse subsets of neurons underlies perception and action. To place a lower bound on the amount of neural activity that can be perceived, we used an all-optical approach to drive behaviour with targeted two-photon optogenetic activation of small ensembles of L2/3 pyramidal neurons in mouse barrel cortex while simultaneously recording local network activity with two-photon calcium imaging. By precisely titrating the number of neurons stimulated, we demonstrate that the lower bound for perception of cortical activity is ~14 pyramidal neurons. We find a steep sigmoidal relationship between the number of activated neurons and behaviour, saturating at only ~37 neurons, and show this relationship can shift with learning. Furthermore, activation of ensembles is balanced by inhibition of neighbouring neurons. This surprising perceptual sensitivity in the face of potent network suppression supports the sparse coding hypothesis, and suggests that cortical perception balances a trade-off between minimizing the impact of noise while efficiently detecting relevant signals.

    1. Neuroscience
    Shenghong He et al.
    Research Article Updated

    Previous studies have explored neurofeedback training for Parkinsonian patients to suppress beta oscillations in the subthalamic nucleus (STN). However, its impacts on movements and Parkinsonian tremor are unclear. We developed a neurofeedback paradigm targeting STN beta bursts and investigated whether neurofeedback training could improve motor initiation in Parkinson’s disease compared to passive observation. Our task additionally allowed us to test which endogenous changes in oscillatory STN activities are associated with trial-to-trial motor performance. Neurofeedback training reduced beta synchrony and increased gamma activity within the STN, and reduced beta band coupling between the STN and motor cortex. These changes were accompanied by reduced reaction times in subsequently cued movements. However, in Parkinsonian patients with pre-existing symptoms of tremor, successful volitional beta suppression was associated with an amplification of tremor which correlated with theta band activity in STN local field potentials, suggesting an additional cross-frequency interaction between STN beta and theta activities.