1. Neuroscience
Download icon

Resolving rates of mutation in the brain using single-neuron genomics

  1. Gilad D Evrony
  2. Eunjung Lee
  3. Peter J Park
  4. Christopher A Walsh  Is a corresponding author
  1. Boston Children's Hospital, United States
  2. Harvard Medical School, United States
Research Article
  • Cited 97
  • Views 6,139
  • Annotations
Cite this article as: eLife 2016;5:e12966 doi: 10.7554/eLife.12966

Abstract

Whether somatic mutations contribute functional diversity to brain cells is a long-standing question. Single-neuron genomics enables direct measurement of somatic mutation rates in human brain and promises to answer this question. A recent study (Upton et al., 2015) reported high rates of somatic LINE-1 element (L1) retrotransposition in the hippocampus and cerebral cortex that would have major implications for normal brain function, and further claimed these mutation events preferentially impact genes important for neuronal function. We identify errors in single-cell sequencing approach, bioinformatic analysis, and validation methods that led to thousands of false-positive artifacts being mistakenly interpreted as somatic mutation events. Our reanalysis of the data supports a corrected mutation frequency (0.2 per cell) more than fifty-fold lower than reported, inconsistent with the authors' conclusion of 'ubiquitous' L1 mosaicism, but consistent with L1 elements mobilizing occasionally. Through consideration of the challenges and pitfalls identified, we provide a foundation and framework for designing single-cell genomics studies.

Article and author information

Author details

  1. Gilad D Evrony

    Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Eunjung Lee

    Department of Biomedical Informatics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Peter J Park

    Department of Biomedical Informatics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher A Walsh

    Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, United States
    For correspondence
    Christopher.Walsh@childrens.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Sean R Eddy, Janelia Research Campus, Howard Hughes Medical Institute, United States

Publication history

  1. Received: November 11, 2015
  2. Accepted: February 1, 2016
  3. Accepted Manuscript published: February 22, 2016 (version 1)
  4. Accepted Manuscript updated: February 25, 2016 (version 2)
  5. Version of Record published: March 16, 2016 (version 3)

Copyright

© 2016, Evrony et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,139
    Page views
  • 1,952
    Downloads
  • 97
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Gordon H Petty et al.
    Research Article

    Neocortical sensory areas have associated primary and secondary thalamic nuclei. While primary nuclei transmit sensory information to cortex, secondary nuclei remain poorly understood. We recorded juxtasomally from secondary somatosensory (POm) and visual (LP) nuclei of awake mice while tracking whisking and pupil size. POm activity correlated with whisking, but not precise whisker kinematics. This coarse movement modulation persisted after facial paralysis and thus was not due to sensory reafference. This phenomenon also continued during optogenetic silencing of somatosensory and motor cortex and after lesion of superior colliculus, ruling out a motor efference copy mechanism. Whisking and pupil dilation were strongly correlated, possibly reflecting arousal. Indeed LP, which is not part of the whisker system, tracked whisking equally well, further indicating that POm activity does not encode whisker movement per se. The semblance of movement-related activity is likely instead a global effect of arousal on both nuclei. We conclude that secondary thalamus monitors behavioral state, rather than movement, and may exist to alter cortical activity accordingly.

    1. Neuroscience
    Jorrit S Montijn et al.
    Tools and Resources Updated

    Neurophysiological studies depend on a reliable quantification of whether and when a neuron responds to stimulation. Simple methods to determine responsiveness require arbitrary parameter choices, such as binning size, while more advanced model-based methods require fitting and hyperparameter tuning. These parameter choices can change the results, which invites bad statistical practice and reduces the replicability. New recording techniques that yield increasingly large numbers of cells would benefit from a test for cell-inclusion that requires no manual curation. Here, we present the parameter-free ZETA-test, which outperforms t-tests, ANOVAs, and renewal-process-based methods by including more cells at a similar false-positive rate. We show that our procedure works across brain regions and recording techniques, including calcium imaging and Neuropixels data. Furthermore, in illustration of the method, we show in mouse visual cortex that (1) visuomotor-mismatch and spatial location are encoded by different neuronal subpopulations and (2) optogenetic stimulation of VIP cells leads to early inhibition and subsequent disinhibition.