Resolving rates of mutation in the brain using single-neuron genomics

  1. Gilad D Evrony
  2. Eunjung Lee
  3. Peter J Park
  4. Christopher A Walsh  Is a corresponding author
  1. Boston Children's Hospital, United States
  2. Harvard Medical School, United States

Abstract

Whether somatic mutations contribute functional diversity to brain cells is a long-standing question. Single-neuron genomics enables direct measurement of somatic mutation rates in human brain and promises to answer this question. A recent study (Upton et al., 2015) reported high rates of somatic LINE-1 element (L1) retrotransposition in the hippocampus and cerebral cortex that would have major implications for normal brain function, and further claimed these mutation events preferentially impact genes important for neuronal function. We identify errors in single-cell sequencing approach, bioinformatic analysis, and validation methods that led to thousands of false-positive artifacts being mistakenly interpreted as somatic mutation events. Our reanalysis of the data supports a corrected mutation frequency (0.2 per cell) more than fifty-fold lower than reported, inconsistent with the authors' conclusion of 'ubiquitous' L1 mosaicism, but consistent with L1 elements mobilizing occasionally. Through consideration of the challenges and pitfalls identified, we provide a foundation and framework for designing single-cell genomics studies.

Article and author information

Author details

  1. Gilad D Evrony

    Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Eunjung Lee

    Department of Biomedical Informatics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Peter J Park

    Department of Biomedical Informatics, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christopher A Walsh

    Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children's Hospital, Boston, United States
    For correspondence
    Christopher.Walsh@childrens.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Sean R Eddy, Howard Hughes Medical Institute and Harvard University, United States

Version history

  1. Received: November 11, 2015
  2. Accepted: February 1, 2016
  3. Accepted Manuscript published: February 22, 2016 (version 1)
  4. Accepted Manuscript updated: February 25, 2016 (version 2)
  5. Version of Record published: March 16, 2016 (version 3)

Copyright

© 2016, Evrony et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,756
    views
  • 2,033
    downloads
  • 139
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gilad D Evrony
  2. Eunjung Lee
  3. Peter J Park
  4. Christopher A Walsh
(2016)
Resolving rates of mutation in the brain using single-neuron genomics
eLife 5:e12966.
https://doi.org/10.7554/eLife.12966

Share this article

https://doi.org/10.7554/eLife.12966

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Andrea I Luppi, Pedro AM Mediano ... Emmanuel A Stamatakis
    Research Article

    How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a ‘synergistic global workspace’, comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain’s default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.

    1. Neuroscience
    Liu Zhou, Wei Wei ... Zijiang J He
    Research Article

    We reliably judge locations of static objects when we walk despite the retinal images of these objects moving with every step we take. Here, we showed our brains solve this optical illusion by adopting an allocentric spatial reference frame. We measured perceived target location after the observer walked a short distance from the home base. Supporting the allocentric coding scheme, we found the intrinsic bias , which acts as a spatial reference frame for perceiving location of a dimly lit target in the dark, remained grounded at the home base rather than traveled along with the observer. The path-integration mechanism responsible for this can utilize both active and passive (vestibular) translational motion signals, but only along the horizontal direction. This asymmetric path-integration finding in human visual space perception is reminiscent of the asymmetric spatial memory finding in desert ants, pointing to nature’s wondrous and logically simple design for terrestrial creatures.