COPI selectively drives maturation of the early Golgi

  1. Effrosyni Papanikou
  2. Kasey J Day
  3. Jotham Austin
  4. Benjamin S Glick  Is a corresponding author
  1. The University of Chicago, United States

Abstract

COPI coated vesicles carry material between Golgi compartments, but the role of COPI in the secretory pathway has been ambiguous. Previous studies of thermosensitive yeast COPI mutants yielded the surprising conclusion that COPI was dispensable both for the secretion of certain proteins and for Golgi cisternal maturation. To revisit these issues, we optimized the anchor-away method, which allows peripheral membrane proteins such as COPI to be sequestered rapidly by adding rapamycin. Video fluorescence microscopy revealed that COPI inactivation causes an early Golgi protein to remain in place while late Golgi proteins undergo cycles of arrival and departure. These dynamics generate partially functional hybrid Golgi structures that contain both early and late Golgi proteins, explaining how secretion can persist when COPI has been inactivated. Our findings suggest that cisternal maturation involves a COPI-dependent pathway that recycles early Golgi proteins, followed by multiple COPI-independent pathways that recycle late Golgi proteins.

Article and author information

Author details

  1. Effrosyni Papanikou

    Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kasey J Day

    Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jotham Austin

    Electron Microscopy Core Facility, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Benjamin S Glick

    Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, United States
    For correspondence
    bsglick@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Chris G Burd, Yale University, United States

Version history

  1. Received: November 20, 2015
  2. Accepted: December 27, 2015
  3. Accepted Manuscript published: December 28, 2015 (version 1)
  4. Version of Record published: February 8, 2016 (version 2)

Copyright

© 2015, Papanikou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,907
    views
  • 905
    downloads
  • 68
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Effrosyni Papanikou
  2. Kasey J Day
  3. Jotham Austin
  4. Benjamin S Glick
(2015)
COPI selectively drives maturation of the early Golgi
eLife 4:e13232.
https://doi.org/10.7554/eLife.13232

Share this article

https://doi.org/10.7554/eLife.13232

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.

    1. Cell Biology
    Makiko Kashio, Sandra Derouiche ... Makoto Tominaga
    Research Article

    Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.