Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation

  1. Xinde Zheng
  2. Leah Boyer
  3. Mingji Jin
  4. Jerome Mertens
  5. Yongsung Kim
  6. Li Ma
  7. Li Ma
  8. Michael Hamm
  9. Fred H Gage
  10. Tony Hunter  Is a corresponding author
  1. Salk Institute for Biological Studies, United States
  2. Salk Institute, United States

Abstract

How metabolism is reprogrammed during neuronal differentiation is unknown. We found that the loss of hexokinase (HK2) and lactate dehydrogenase (LDHA) expression, together with a switch in pyruvate kinase gene splicing from PKM2 to PKM1, marks the transition from aerobic glycolysis in neural progenitor cells (NPC) to neuronal oxidative phosphorylation. The protein levels of c-MYC and N-MYC, transcriptional activators of the HK2 and LDHA genes, decrease dramatically. Constitutive expression of HK2 and LDHA during differentiation leads to neuronal cell death, indicating that the shut-off aerobic glycolysis is essential for neuronal survival. The metabolic regulators PGC-1α and ERRγ increase significantly upon neuronal differentiation to sustain the transcription of metabolic and mitochondrial genes, whose levels are unchanged compared to NPCs, revealing distinct transcriptional regulation of metabolic genes in the proliferation and post-mitotic differentiation states. Mitochondrial mass increases proportionally with neuronal mass growth, indicating an unknown mechanism linking mitochondrial biogenesis to cell size.

Article and author information

Author details

  1. Xinde Zheng

    Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Leah Boyer

    Laboratory of Genetics, Salk Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mingji Jin

    Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jerome Mertens

    Laboratory of Genetics, Salk Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yongsung Kim

    Laboratory of Genetics, Salk Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Li Ma

    Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Li Ma

    Gene Expression Laboratory, Salk Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael Hamm

    Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Fred H Gage

    Laboratory of Genetics, Salk Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Tony Hunter

    Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    For correspondence
    hunter@salk.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Zheng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 17,984
    views
  • 3,354
    downloads
  • 491
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xinde Zheng
  2. Leah Boyer
  3. Mingji Jin
  4. Jerome Mertens
  5. Yongsung Kim
  6. Li Ma
  7. Li Ma
  8. Michael Hamm
  9. Fred H Gage
  10. Tony Hunter
(2016)
Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation
eLife 5:e13374.
https://doi.org/10.7554/eLife.13374

Share this article

https://doi.org/10.7554/eLife.13374

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Ruben Sebastian-Perez, Shoma Nakagawa ... Maria Pia Cosma
    Research Article

    Chromocenters are established after the 2-cell (2C) stage during mouse embryonic development, but the factors that mediate chromocenter formation remain largely unknown. To identify regulators of 2C heterochromatin establishment in mice, we generated an inducible system to convert embryonic stem cells (ESCs) to 2C-like cells. This conversion is marked by a global reorganization and dispersion of H3K9me3-heterochromatin foci, which are then reversibly formed upon re-entry into pluripotency. By profiling the chromatin-bound proteome (chromatome) through genome capture of ESCs transitioning to 2C-like cells, we uncover chromatin regulators involved in de novo heterochromatin formation. We identified TOPBP1 and investigated its binding partner SMARCAD1. SMARCAD1 and TOPBP1 associate with H3K9me3-heterochromatin in ESCs. Interestingly, the nuclear localization of SMARCAD1 is lost in 2C-like cells. SMARCAD1 or TOPBP1 depletion in mouse embryos leads to developmental arrest, reduction of H3K9me3, and remodeling of heterochromatin foci. Collectively, our findings contribute to comprehending the maintenance of chromocenters during early development.

    1. Developmental Biology
    Yunfei Mu, Shijia Hu ... Hongjun Shi
    Research Article

    Notch signaling has been identified as a key regulatory pathway in patterning the endocardium through activation of endothelial-to-mesenchymal transition (EMT) in the atrioventricular canal (AVC) and proximal outflow tract (OFT) region. However, the precise mechanism underlying Notch activation remains elusive. By transiently blocking the heartbeat of E9.5 mouse embryos, we found that Notch activation in the arterial endothelium was dependent on its ligand Dll4, whereas the reduced expression of Dll4 in the endocardium led to a ligand-depleted field, enabling Notch to be specifically activated in AVC and OFT by regional increased shear stress. The strong shear stress altered the membrane lipid microdomain structure of endocardial cells, which activated mTORC2 and PKC and promoted Notch1 cleavage even in the absence of strong ligand stimulation. These findings highlight the role of mechanical forces as a primary cue for endocardial patterning and provide insights into the mechanisms underlying congenital heart diseases of endocardial origin.