Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration

Abstract

mTOR inhibition is beneficial in neurodegenerative disease models and its effects are often attributable to the modulation of autophagy and anti-apoptosis. Here, we report a neglected but important bioenergetic effect of mTOR inhibition in neurons. mTOR inhibition by rapamycin significantly preserves neuronal ATP levels, particularly when oxidative phosphorylation is impaired, such as in neurons treated with mitochondrial inhibitors, or in neurons derived from maternally inherited Leigh syndrome (MILS) patient iPS cells with ATP synthase deficiency. Rapamycin treatment significantly improves the resistance of MILS neurons to glutamate toxicity. Surprisingly, in mitochondrially defective neurons, but not neuroprogenitor cells, ribosomal S6 and S6 kinase phosphorylation increased over time, despite activation of AMPK, which is often linked to mTOR inhibition. A rapamycin-induced decrease in protein synthesis, a major energy-consuming process, may account for its ATP-saving effect. We propose that a mild reduction in protein synthesis may have the potential to treat mitochondria-related neurodegeneration.

Article and author information

Author details

  1. Xinde Zheng

    Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  2. Leah Boyer

    Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  3. Mingji Jin

    Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, Lo Jolla, United States
    Competing interests
    No competing interests declared.
  4. Yongsung Kim

    Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  5. Weiwei Fan

    Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  6. Cedric Bardy

    Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  7. Travis Berggren

    Stem cell core, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  8. Ronald M Evans

    Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  9. Fred H Gage

    Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  10. Tony Hunter

    Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    For correspondence
    hunter@salk.edu
    Competing interests
    Tony Hunter, Senior editor, eLife.

Copyright

© 2016, Zheng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,781
    views
  • 1,555
    downloads
  • 112
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xinde Zheng
  2. Leah Boyer
  3. Mingji Jin
  4. Yongsung Kim
  5. Weiwei Fan
  6. Cedric Bardy
  7. Travis Berggren
  8. Ronald M Evans
  9. Fred H Gage
  10. Tony Hunter
(2016)
Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration
eLife 5:e13378.
https://doi.org/10.7554/eLife.13378

Share this article

https://doi.org/10.7554/eLife.13378

Further reading

    1. Neuroscience
    Christopher H Chen, Zhiyi Yao ... Wade G Regehr
    Short Report

    Purkinje cells (PCs) primarily project to cerebellar nuclei but also directly innervate the brainstem. Some PC-brainstem projections have been described previously, but most have not been thoroughly characterized. Here, we use a PC-specific cre line to anatomically and electrophysiologically characterize PC projections to the brainstem. PC synapses are surprisingly widespread, with the highest densities found in the vestibular and parabrachial nuclei. However, there are pronounced regional differences in synaptic densities within both the vestibular and parabrachial nuclei. Large optogenetically evoked PC-IPSCs are preferentially observed in subregions with the highest densities of putative PC boutons, suggesting that PCs selectively influence these areas and the behaviors they regulate. Unexpectedly, the pontine central gray and nearby subnuclei also contained a low density of putative PC boutons, and large PC-IPSCs are observed in a small fraction of cells. We combined electrophysiological recordings with immunohistochemistry to assess the molecular identities of two potential PC targets: PC synapses onto mesencephalic trigeminal neurons were not observed even though these cells are in close proximity to PC boutons; PC synapses onto locus coeruleus neurons are exceedingly rare or absent, even though previous studies concluded that PCs are a major input to these neurons. The availability of a highly selective cre line for PCs allowed us to study functional synapses, while avoiding complications that can accompany the use of viral approaches. We conclude that PCs directly innervate numerous brainstem nuclei, and in many nuclei they strongly inhibit a small fraction of cells. This suggests that PCs selectively target cell types with specific behavioral roles in the brainstem.

    1. Neuroscience
    Anne L Willems, Lukas Van Oudenhove, Bram Vervliet
    Research Article

    The unexpected absence of danger constitutes a pleasurable event that is critical for the learning of safety. Accumulating evidence points to similarities between the processing of absent threat and the well-established reward prediction error (PE). However, clear-cut evidence for this analogy in humans is scarce. In line with recent animal data, we showed that the unexpected omission of (painful) electrical stimulation triggers activations within key regions of the reward and salience pathways and that these activations correlate with the pleasantness of the reported relief. Furthermore, by parametrically violating participants’ probability and intensity related expectations of the upcoming stimulation, we showed for the first time in humans that omission-related activations in the VTA/SN were stronger following omissions of more probable and intense stimulations, like a positive reward PE signal. Together, our findings provide additional support for an overlap in the neural processing of absent danger and rewards in humans.