Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration

Abstract

mTOR inhibition is beneficial in neurodegenerative disease models and its effects are often attributable to the modulation of autophagy and anti-apoptosis. Here, we report a neglected but important bioenergetic effect of mTOR inhibition in neurons. mTOR inhibition by rapamycin significantly preserves neuronal ATP levels, particularly when oxidative phosphorylation is impaired, such as in neurons treated with mitochondrial inhibitors, or in neurons derived from maternally inherited Leigh syndrome (MILS) patient iPS cells with ATP synthase deficiency. Rapamycin treatment significantly improves the resistance of MILS neurons to glutamate toxicity. Surprisingly, in mitochondrially defective neurons, but not neuroprogenitor cells, ribosomal S6 and S6 kinase phosphorylation increased over time, despite activation of AMPK, which is often linked to mTOR inhibition. A rapamycin-induced decrease in protein synthesis, a major energy-consuming process, may account for its ATP-saving effect. We propose that a mild reduction in protein synthesis may have the potential to treat mitochondria-related neurodegeneration.

Article and author information

Author details

  1. Xinde Zheng

    Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  2. Leah Boyer

    Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  3. Mingji Jin

    Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, Lo Jolla, United States
    Competing interests
    No competing interests declared.
  4. Yongsung Kim

    Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  5. Weiwei Fan

    Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  6. Cedric Bardy

    Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  7. Travis Berggren

    Stem cell core, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  8. Ronald M Evans

    Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  9. Fred H Gage

    Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  10. Tony Hunter

    Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    For correspondence
    hunter@salk.edu
    Competing interests
    Tony Hunter, Senior editor, eLife.

Copyright

© 2016, Zheng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,699
    views
  • 1,542
    downloads
  • 109
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xinde Zheng
  2. Leah Boyer
  3. Mingji Jin
  4. Yongsung Kim
  5. Weiwei Fan
  6. Cedric Bardy
  7. Travis Berggren
  8. Ronald M Evans
  9. Fred H Gage
  10. Tony Hunter
(2016)
Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration
eLife 5:e13378.
https://doi.org/10.7554/eLife.13378

Share this article

https://doi.org/10.7554/eLife.13378

Further reading

    1. Neuroscience
    Charles R Heller, Gregory R Hamersky, Stephen V David
    Research Article

    Categorical sensory representations are critical for many behaviors, including speech perception. In the auditory system, categorical information is thought to arise hierarchically, becoming increasingly prominent in higher-order cortical regions. The neural mechanisms that support this robust and flexible computation remain poorly understood. Here, we studied sound representations in the ferret primary and non-primary auditory cortex while animals engaged in a challenging sound discrimination task. Population-level decoding of simultaneously recorded single neurons revealed that task engagement caused categorical sound representations to emerge in non-primary auditory cortex. In primary auditory cortex, task engagement caused a general enhancement of sound decoding that was not specific to task-relevant categories. These findings are consistent with mixed selectivity models of neural disentanglement, in which early sensory regions build an overcomplete representation of the world and allow neurons in downstream brain regions to flexibly and selectively read out behaviorally relevant, categorical information.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Amber R Philp, Carolina R Reyes ... Francisco J Rivera
    Short Report

    Revealing unknown cues that regulate oligodendrocyte progenitor cell (OPC) function in remyelination is important to optimise the development of regenerative therapies for multiple sclerosis (MS). Platelets are present in chronic non-remyelinated lesions of MS and an increase in circulating platelets has been described in experimental autoimmune encephalomyelitis (EAE) mice, an animal model for MS. However, the contribution of platelets to remyelination remains unexplored. Here we show platelet aggregation in proximity to OPCs in areas of experimental demyelination. Partial depletion of circulating platelets impaired OPC differentiation and remyelination, without altering blood-brain barrier stability and neuroinflammation. Transient exposure to platelets enhanced OPC differentiation in vitro, whereas sustained exposure suppressed this effect. In a mouse model of thrombocytosis (Calr+/-), there was a sustained increase in platelet aggregation together with a reduction of newly-generated oligodendrocytes following toxin-induced demyelination. These findings reveal a complex bimodal contribution of platelet to remyelination and provide insights into remyelination failure in MS.