Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration

Abstract

mTOR inhibition is beneficial in neurodegenerative disease models and its effects are often attributable to the modulation of autophagy and anti-apoptosis. Here, we report a neglected but important bioenergetic effect of mTOR inhibition in neurons. mTOR inhibition by rapamycin significantly preserves neuronal ATP levels, particularly when oxidative phosphorylation is impaired, such as in neurons treated with mitochondrial inhibitors, or in neurons derived from maternally inherited Leigh syndrome (MILS) patient iPS cells with ATP synthase deficiency. Rapamycin treatment significantly improves the resistance of MILS neurons to glutamate toxicity. Surprisingly, in mitochondrially defective neurons, but not neuroprogenitor cells, ribosomal S6 and S6 kinase phosphorylation increased over time, despite activation of AMPK, which is often linked to mTOR inhibition. A rapamycin-induced decrease in protein synthesis, a major energy-consuming process, may account for its ATP-saving effect. We propose that a mild reduction in protein synthesis may have the potential to treat mitochondria-related neurodegeneration.

Article and author information

Author details

  1. Xinde Zheng

    Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  2. Leah Boyer

    Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  3. Mingji Jin

    Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, Lo Jolla, United States
    Competing interests
    No competing interests declared.
  4. Yongsung Kim

    Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  5. Weiwei Fan

    Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  6. Cedric Bardy

    Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  7. Travis Berggren

    Stem cell core, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  8. Ronald M Evans

    Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  9. Fred H Gage

    Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, United States
    Competing interests
    No competing interests declared.
  10. Tony Hunter

    Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
    For correspondence
    hunter@salk.edu
    Competing interests
    Tony Hunter, Senior editor, eLife.

Copyright

© 2016, Zheng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,809
    views
  • 1,558
    downloads
  • 113
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xinde Zheng
  2. Leah Boyer
  3. Mingji Jin
  4. Yongsung Kim
  5. Weiwei Fan
  6. Cedric Bardy
  7. Travis Berggren
  8. Ronald M Evans
  9. Fred H Gage
  10. Tony Hunter
(2016)
Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration
eLife 5:e13378.
https://doi.org/10.7554/eLife.13378

Share this article

https://doi.org/10.7554/eLife.13378

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Tanya Wolff, Mark Eddison ... Gerald M Rubin
    Research Article

    The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small molecule neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.

    1. Neuroscience
    Roshani Nhuchhen Pradhan, Craig Montell, Youngseok Lee
    Research Article

    The question as to whether animals taste cholesterol taste is not resolved. This study investigates whether the fruit fly, Drosophila melanogaster, is capable of detecting cholesterol through their gustatory system. We found that flies are indifferent to low levels of cholesterol and avoid higher levels. The avoidance is mediated by gustatory receptor neurons (GRNs), demonstrating that flies can taste cholesterol. The cholesterol-responsive GRNs comprise a subset that also responds to bitter substances. Cholesterol detection depends on five ionotropic receptor (IR) family members, and disrupting any of these genes impairs the flies' ability to avoid cholesterol. Ectopic expressions of these IRs in GRNs reveals two classes of cholesterol receptors, each with three shared IRs and one unique subunit. Additionally, expressing cholesterol receptors in sugar-responsive GRNs confers attraction to cholesterol. This study reveals that flies can taste cholesterol, and that the detection depends on IRs in GRNs.