Nucleosome breathing and remodeling constrain CRISPR‐Cas9 function

  1. R Stefan Isaac
  2. Fuguo Jiang
  3. Jennifer A Doudna
  4. Wendell A Lim
  5. Geeta J Narlikar  Is a corresponding author
  6. Ricardo AB Almeida
  1. University of California, San Francisco, United States
  2. University of California, Berkeley, United States
  3. Howard Hughes Medical Institute, University of California, Berkeley, United States
  4. Howard Hughes Medical Institute, United States

Abstract

The CRISPR-Cas9 bacterial surveillance system has become a versatile tool for genome editing and gene regulation in eukaryotic cells, yet how CRISPR-Cas9 contends with the barriers presented by eukaryotic chromatin is poorly understood. Here we investigate how the smallest unit of chromatin, a nucleosome, constrains the activity of the CRISPR-Cas9 system. We find that nucleosomes assembled on native DNA sequences are permissive to Cas9 action. However, the accessibility of nucleosomal DNA to Cas9 is variable over several orders of magnitude depending on dynamic properties of the DNA sequence and the distance of the PAM site from the nucleosome dyad. We further find that chromatin remodeling enzymes stimulate Cas9 activity on nucleosomal templates. Our findings imply that the spontaneous breathing of nucleosomal DNA together with the action of chromatin remodelers allows Cas9 to effectively act on chromatin in vivo.

Article and author information

Author details

  1. R Stefan Isaac

    Department of Biochemistry and Biophysics and Tetrad Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  2. Fuguo Jiang

    Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Jennifer A Doudna

    Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    Jennifer A Doudna, Co‐founder of Caribou Biosciences; Editas Medicine; Intellia Therapeutics.
  4. Wendell A Lim

    Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, San Francisco, United States
    Competing interests
    Wendell A Lim, Founder of Cell Design Labs, and member of its scientific advisory board.
  5. Geeta J Narlikar

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    For correspondence
    Geeta.Narlikar@ucsf.edu
    Competing interests
    No competing interests declared.
  6. Ricardo AB Almeida

    Department of Cellular and Molecular Pharmacology, Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Karen Adelman, National Institute of Environmental Health Sciences, United States

Version history

  1. Received: December 2, 2015
  2. Accepted: April 16, 2016
  3. Accepted Manuscript published: April 28, 2016 (version 1)
  4. Version of Record published: May 25, 2016 (version 2)

Copyright

© 2016, Isaac et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,229
    views
  • 2,305
    downloads
  • 183
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. R Stefan Isaac
  2. Fuguo Jiang
  3. Jennifer A Doudna
  4. Wendell A Lim
  5. Geeta J Narlikar
  6. Ricardo AB Almeida
(2016)
Nucleosome breathing and remodeling constrain CRISPR‐Cas9 function
eLife 5:e13450.
https://doi.org/10.7554/eLife.13450

Share this article

https://doi.org/10.7554/eLife.13450

Further reading

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Henning Mühlenbeck, Yuko Tsutsui ... Cyril Zipfel
    Research Article

    Transmembrane signaling by plant receptor kinases (RKs) has long been thought to involve reciprocal trans-phosphorylation of their intracellular kinase domains. The fact that many of these are pseudokinase domains, however, suggests that additional mechanisms must govern RK signaling activation. Non-catalytic signaling mechanisms of protein kinase domains have been described in metazoans, but information is scarce for plants. Recently, a non-catalytic function was reported for the leucine-rich repeat (LRR)-RK subfamily XIIa member EFR (elongation factor Tu receptor) and phosphorylation-dependent conformational changes were proposed to regulate signaling of RKs with non-RD kinase domains. Here, using EFR as a model, we describe a non-catalytic activation mechanism for LRR-RKs with non-RD kinase domains. EFR is an active kinase, but a kinase-dead variant retains the ability to enhance catalytic activity of its co-receptor kinase BAK1/SERK3 (brassinosteroid insensitive 1-associated kinase 1/somatic embryogenesis receptor kinase 3). Applying hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis and designing homology-based intragenic suppressor mutations, we provide evidence that the EFR kinase domain must adopt its active conformation in order to activate BAK1 allosterically, likely by supporting αC-helix positioning in BAK1. Our results suggest a conformational toggle model for signaling, in which BAK1 first phosphorylates EFR in the activation loop to stabilize its active conformation, allowing EFR in turn to allosterically activate BAK1.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Katarzyna Marta Zoltowska, Utpal Das ... Lucía Chávez-Gutiérrez
    Research Article

    Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer’s disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17–42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.