1. Biochemistry and Chemical Biology
  2. Chromosomes and Gene Expression
Download icon

Nucleosome breathing and remodeling constrain CRISPR‐Cas9 function

  1. R Stefan Isaac
  2. Fuguo Jiang
  3. Jennifer A Doudna
  4. Wendell A Lim
  5. Geeta J Narlikar  Is a corresponding author
  6. Ricardo AB Almeida
  1. University of California, San Francisco, United States
  2. University of California, Berkeley, United States
  3. Howard Hughes Medical Institute, University of California, Berkeley, United States
  4. Howard Hughes Medical Institute, United States
Short Report
  • Cited 115
  • Views 8,368
  • Annotations
Cite this article as: eLife 2016;5:e13450 doi: 10.7554/eLife.13450

Abstract

The CRISPR-Cas9 bacterial surveillance system has become a versatile tool for genome editing and gene regulation in eukaryotic cells, yet how CRISPR-Cas9 contends with the barriers presented by eukaryotic chromatin is poorly understood. Here we investigate how the smallest unit of chromatin, a nucleosome, constrains the activity of the CRISPR-Cas9 system. We find that nucleosomes assembled on native DNA sequences are permissive to Cas9 action. However, the accessibility of nucleosomal DNA to Cas9 is variable over several orders of magnitude depending on dynamic properties of the DNA sequence and the distance of the PAM site from the nucleosome dyad. We further find that chromatin remodeling enzymes stimulate Cas9 activity on nucleosomal templates. Our findings imply that the spontaneous breathing of nucleosomal DNA together with the action of chromatin remodelers allows Cas9 to effectively act on chromatin in vivo.

Article and author information

Author details

  1. R Stefan Isaac

    Department of Biochemistry and Biophysics and Tetrad Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  2. Fuguo Jiang

    Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Jennifer A Doudna

    Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    Jennifer A Doudna, Co‐founder of Caribou Biosciences; Editas Medicine; Intellia Therapeutics.
  4. Wendell A Lim

    Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, San Francisco, United States
    Competing interests
    Wendell A Lim, Founder of Cell Design Labs, and member of its scientific advisory board.
  5. Geeta J Narlikar

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    For correspondence
    Geeta.Narlikar@ucsf.edu
    Competing interests
    No competing interests declared.
  6. Ricardo AB Almeida

    Department of Cellular and Molecular Pharmacology, Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Karen Adelman, National Institute of Environmental Health Sciences, United States

Publication history

  1. Received: December 2, 2015
  2. Accepted: April 16, 2016
  3. Accepted Manuscript published: April 28, 2016 (version 1)
  4. Version of Record published: May 25, 2016 (version 2)

Copyright

© 2016, Isaac et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,368
    Page views
  • 2,183
    Downloads
  • 115
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Jasmin Mertins et al.
    Research Article Updated

    SNARE proteins have been described as the effectors of fusion events in the secretory pathway more than two decades ago. The strong interactions between SNARE domains are clearly important in membrane fusion, but it is unclear whether they are involved in any other cellular processes. Here, we analyzed two classical SNARE proteins, syntaxin 1A and SNAP25. Although they are supposed to be engaged in tight complexes, we surprisingly find them largely segregated in the plasma membrane. Syntaxin 1A only occupies a small fraction of the plasma membrane area. Yet, we find it is able to redistribute the far more abundant SNAP25 on the mesoscale by gathering crowds of SNAP25 molecules onto syntaxin clusters in a SNARE-domain-dependent manner. Our data suggest that SNARE domain interactions are not only involved in driving membrane fusion on the nanoscale, but also play an important role in controlling the general organization of proteins on the mesoscale. Further, we propose these mechanisms preserve active syntaxin 1A–SNAP25 complexes at the plasma membrane.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Rania Elsabrouty et al.
    Research Article

    UbiA prenyltransferase domain-containing protein-1 (UBIAD1) utilizes geranylgeranyl pyrophosphate (GGpp) to synthesize the vitamin K2 subtype menaquinone-4. The prenyltransferase has emerged as a key regulator of sterol-accelerated, endoplasmic reticulum (ER)-associated degradation (ERAD) of HMG CoA reductase, the rate-limiting enzyme in synthesis of cholesterol and nonsterol isoprenoids including GGpp. Sterols induce binding of UBIAD1 to reductase, inhibiting its ERAD. Geranylgeraniol (GGOH), the alcohol derivative of GGpp, disrupts this binding and thereby stimulates ERAD of reductase and translocation of UBIAD1 to Golgi. We now show that overexpression of Type 1 polyisoprenoid diphosphate phosphatase (PDP1), which dephosphorylates GGpp and other isoprenyl pyrophosphates to corresponding isoprenols, abolishes protein geranylgeranylation as well as GGOH-induced ERAD of reductase and Golgi transport of UBIAD1. Conversely, these reactions are enhanced in the absence of PDP1. Our findings indicate PDP1-mediated hydrolysis of GGpp significantly contributes to a feedback mechanism that maintains optimal intracellular levels of the nonsterol isoprenoid.