1. Genetics and Genomics
  2. Neuroscience
Download icon

Neural clocks and Neuropeptide F/Y regulate circadian gene expression in a peripheral metabolic tissue

  1. Renske Erion
  2. Anna N King
  3. Gang Wu
  4. John B Hogenesch
  5. Amita Sehgal  Is a corresponding author
  1. Howard Hughes Medical Institute, University of Pennsylvania, United States
  2. University of Pennsylvania, United States
  3. University of Cincinnati, United States
Research Article
  • Cited 34
  • Views 2,418
  • Annotations
Cite this article as: eLife 2016;5:e13552 doi: 10.7554/eLife.13552

Abstract

Metabolic homeostasis requires coordination between circadian clocks in different tissues. Also, systemic signals appear to be required for some transcriptional rhythms in the mammalian liver and the Drosophila fat body. Here we show that free-running oscillations of the fat body clock require clock function in the PDF-positive cells of the fly brain. Interestingly, rhythmic expression of the cytochrome P450 transcripts, sex-specific enzyme 1 (sxe1) and Cyp6a21, which cycle in the fat body independently of the local clock, depends upon clocks in neurons expressing neuropeptide F (NPF). NPF signaling itself is required to drive cycling of sxe1 and Cyp6a21 in the fat body, and its mammalian ortholog, Npy, functions similarly to regulate cycling of cytochrome P450 genes in the mouse liver. These data highlight the importance of neuronal clocks for peripheral rhythms, particularly in a specific detoxification pathway, and identify a novel and conserved role for NPF/Npy in circadian rhythms.

Article and author information

Author details

  1. Renske Erion

    Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Anna N King

    Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Gang Wu

    Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. John B Hogenesch

    Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Amita Sehgal

    Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, United States
    For correspondence
    amita@mail.med.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the University of Pennsylvania.

Reviewing Editor

  1. K VijayRaghavan, Tata Institute of Fundamental Research, India

Publication history

  1. Received: December 6, 2015
  2. Accepted: April 7, 2016
  3. Accepted Manuscript published: April 14, 2016 (version 1)
  4. Version of Record published: May 10, 2016 (version 2)
  5. Version of Record updated: August 4, 2017 (version 3)

Copyright

© 2016, Erion et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,418
    Page views
  • 664
    Downloads
  • 34
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Ursula Oggenfuss et al.
    Research Article

    Genome evolution is driven by the activity of transposable elements (TEs). The spread of TEs can have deleterious effects including the destabilization of genome integrity and expansions. However, the precise triggers of genome expansions remain poorly understood because genome size evolution is typically investigated only among deeply divergent lineages. Here, we use a large population genomics dataset of 284 individuals from populations across the globe of Zymoseptoria tritici, a major fungal wheat pathogen. We built a robust map of genome-wide TE insertions and deletions to track a total of 2456 polymorphic loci within the species. We show that purifying selection substantially depressed TE frequencies in most populations, but some rare TEs have recently risen in frequency and likely confer benefits. We found that specific TE families have undergone a substantial genome-wide expansion from the pathogen’s center of origin to more recently founded populations. The most dramatic increase in TE insertions occurred between a pair of North American populations collected in the same field at an interval of 25 years. We find that both genome-wide counts of TE insertions and genome size have increased with colonization bottlenecks. Hence, the demographic history likely played a major role in shaping genome evolution within the species. We show that both the activation of specific TEs and relaxed purifying selection underpin this incipient expansion of the genome. Our study establishes a model to recapitulate TE-driven genome evolution over deeper evolutionary timescales.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Teresa Romeo Luperchio et al.
    Research Article Updated

    Although each Mendelian Disorder of the Epigenetic Machinery (MDEM) has a different causative gene, there are shared disease manifestations. We hypothesize that this phenotypic convergence is a consequence of shared epigenetic alterations. To identify such shared alterations, we interrogate chromatin (ATAC-seq) and expression (RNA-seq) states in B cells from three MDEM mouse models (Kabuki [KS] type 1 and 2 and Rubinstein-Taybi type 1 [RT1] syndromes). We develop a new approach for the overlap analysis and find extensive overlap primarily localized in gene promoters. We show that disruption of chromatin accessibility at promoters often disrupts downstream gene expression, and identify 587 loci and 264 genes with shared disruption across all three MDEMs. Subtle expression alterations of multiple, IgA-relevant genes, collectively contribute to IgA deficiency in KS1 and RT1, but not in KS2. We propose that the joint study of MDEMs offers a principled approach for systematically mapping functional epigenetic variation in mammals.