Abstract

Human calcium-sensing receptor (CaSR) is a G-protein coupled receptor (GPCR) that maintains extracellular Ca2+ homeostasis through the regulation of parathyroid hormone secretion. It functions as a disulfide-tethered homodimer composed of three main domains, the Venus Flytrap module, cysteine-rich domain, and seven-helix transmembrane region. Here we present the crystal structures of the entire extracellular domain of CaSR in the resting and active conformations. We provide direct evidence that L-amino acids are agonists of the receptor. In the active structure, L-Trp occupies the orthosteric agonist-binding site at the interdomain cleft, and is primarily responsible for inducing extracellular domain closure to initiate receptor activation. Our structures reveal multiple binding sites for Ca2+ and PO43- ions. Both ions are crucial for structural integrity of the receptor. While Ca2+ ions stabilize the active state, PO43- ions reinforce the inactive conformation. The activation mechanism of CaSR involves the formation of a novel dimer interface between subunits.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Yong Geng

    Department of Pharmacology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lidia Mosyak

    Department of Pharmacology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Igor Kurinov

    Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Hao Zuo

    Department of Pharmacology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Emmanuel Sturchler

    Department of Molecular Therapeutics, The Scripps Translational Science Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tat Cheung Cheng

    Department of Pharmacology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Prakash Subramanyam

    Department of Physiology and Cellular Biophysics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Alice P Brown

    School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Sarah C Brennan

    School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Hee-chang Mun

    School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Martin Bush

    Department of Pharmacology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Yan Chen

    Department of Pharmacology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Trang X Nguyen

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Baohua Cao

    Department of Pharmacology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Donald D Chang

    Department of Physiology and Cellular Biophysics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Matthias Quick

    Department of Psychiatry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Arthur D Conigrave

    School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia
    Competing interests
    The authors declare that no competing interests exist.
  18. Henry M Colecraft

    Department of Physiology and Cellular Biophysics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Patricia McDonald

    Department of Molecular Therapeutics, The Scripps Translational Science Institute, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Qing R Fan

    Department of Pharmacology, Columbia University, New York, United States
    For correspondence
    qf13@cumc.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9330-0963

Funding

National Institute of General Medical Sciences (R01GM112973)

  • Qing R Fan

American Heart Association (15GRNT25420002)

  • Qing R Fan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Geng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,800
    views
  • 1,641
    downloads
  • 202
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.13662

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.

    1. Structural Biology and Molecular Biophysics
    Manming Xu, Sarath Chandra Dantu ... Shozeb Haider
    Research Article

    The relationship between protein dynamics and function is essential for understanding biological processes and developing effective therapeutics. Functional sites within proteins are critical for activities such as substrate binding, catalysis, and structural changes. Existing computational methods for the predictions of functional residues are trained on sequence, structural, and experimental data, but they do not explicitly model the influence of evolution on protein dynamics. This overlooked contribution is essential as it is known that evolution can fine-tune protein dynamics through compensatory mutations either to improve the proteins’ performance or diversify its function while maintaining the same structural scaffold. To model this critical contribution, we introduce DyNoPy, a computational method that combines residue coevolution analysis with molecular dynamics simulations, revealing hidden correlations between functional sites. DyNoPy constructs a graph model of residue–residue interactions, identifies communities of key residue groups, and annotates critical sites based on their roles. By leveraging the concept of coevolved dynamical couplings—residue pairs with critical dynamical interactions that have been preserved during evolution—DyNoPy offers a powerful method for predicting and analysing protein evolution and dynamics. We demonstrate the effectiveness of DyNoPy on SHV-1 and PDC-3, chromosomally encoded β-lactamases linked to antibiotic resistance, highlighting its potential to inform drug design and address pressing healthcare challenges.