Midbrain dopamine neurons compute inferred and cached value prediction errors in a common framework

  1. Brian F Sadacca
  2. Joshua L Jones
  3. Geoffrey Schoenbaum  Is a corresponding author
  1. National Institutes of Health, United States

Abstract

Midbrain dopamine neurons have been proposed to signal reward prediction errors as defined in temporal difference (TD) learning algorithms. While these models have been extremely powerful in interpreting dopamine activity, they typically do not use value derived through inference in computing errors. This is important because much real world behavior - and thus many opportunities for error-driven learning - is based on such predictions. Here, we show that error-signaling rat dopamine neurons respond to the inferred, model-based value of cues that have not been paired with reward and do so in the same framework as they track the putative cached value of cues previously paired with reward. This suggests that dopamine neurons access a wider variety of information than contemplated by standard TD models and that, while their firing conforms to predictions of TD models in some cases, they may not be restricted to signaling errors from TD predictions.

Article and author information

Author details

  1. Brian F Sadacca

    Intramural Research program of the National Institute on Drug Abuse, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Joshua L Jones

    Intramural Research program of the National Institute on Drug Abuse, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Geoffrey Schoenbaum

    Intramural Research program of the National Institute on Drug Abuse, National Institutes of Health, Bethesda, United States
    For correspondence
    geoffrey.schoenbaum@nih.gov
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Experiments were performed at the National Institute on Drug Abuse Intramural Research Program in accordance with NIH guidelines and an approved institutional animal care and use committee protocol (15-CNRB-108). The protocol was approved by the ACUC at NIDA-IRP (Assurance Number: A4149-01).

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,416
    views
  • 842
    downloads
  • 95
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brian F Sadacca
  2. Joshua L Jones
  3. Geoffrey Schoenbaum
(2016)
Midbrain dopamine neurons compute inferred and cached value prediction errors in a common framework
eLife 5:e13665.
https://doi.org/10.7554/eLife.13665

Share this article

https://doi.org/10.7554/eLife.13665

Further reading

    1. Neuroscience
    Bradley B Doll, Nathaniel D Daw
    Insight

    Evidence increasingly suggests that dopaminergic neurons play a more sophisticated role in predicting rewards than previously thought.

    1. Cell Biology
    2. Neuroscience
    Victor C Wong, Patrick R Houlihan ... Erin K O'Shea
    Research Article

    AMPA-type receptors (AMPARs) are rapidly inserted into synapses undergoing plasticity to increase synaptic transmission, but it is not fully understood if and how AMPAR-containing vesicles are selectively trafficked to these synapses. Here, we developed a strategy to label AMPAR GluA1 subunits expressed from their endogenous loci in cultured rat hippocampal neurons and characterized the motion of GluA1-containing vesicles using single-particle tracking and mathematical modeling. We find that GluA1-containing vesicles are confined and concentrated near sites of stimulation-induced structural plasticity. We show that confinement is mediated by actin polymerization, which hinders the active transport of GluA1-containing vesicles along the length of the dendritic shaft by modulating the rheological properties of the cytoplasm. Actin polymerization also facilitates myosin-mediated transport of GluA1-containing vesicles to exocytic sites. We conclude that neurons utilize F-actin to increase vesicular GluA1 reservoirs and promote exocytosis proximal to the sites of synaptic activity.