Midbrain dopamine neurons compute inferred and cached value prediction errors in a common framework

  1. Brian F Sadacca
  2. Joshua L Jones
  3. Geoffrey Schoenbaum  Is a corresponding author
  1. National Institutes of Health, United States

Abstract

Midbrain dopamine neurons have been proposed to signal reward prediction errors as defined in temporal difference (TD) learning algorithms. While these models have been extremely powerful in interpreting dopamine activity, they typically do not use value derived through inference in computing errors. This is important because much real world behavior - and thus many opportunities for error-driven learning - is based on such predictions. Here, we show that error-signaling rat dopamine neurons respond to the inferred, model-based value of cues that have not been paired with reward and do so in the same framework as they track the putative cached value of cues previously paired with reward. This suggests that dopamine neurons access a wider variety of information than contemplated by standard TD models and that, while their firing conforms to predictions of TD models in some cases, they may not be restricted to signaling errors from TD predictions.

Article and author information

Author details

  1. Brian F Sadacca

    Intramural Research program of the National Institute on Drug Abuse, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Joshua L Jones

    Intramural Research program of the National Institute on Drug Abuse, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Geoffrey Schoenbaum

    Intramural Research program of the National Institute on Drug Abuse, National Institutes of Health, Bethesda, United States
    For correspondence
    geoffrey.schoenbaum@nih.gov
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Experiments were performed at the National Institute on Drug Abuse Intramural Research Program in accordance with NIH guidelines and an approved institutional animal care and use committee protocol (15-CNRB-108). The protocol was approved by the ACUC at NIDA-IRP (Assurance Number: A4149-01).

Reviewing Editor

  1. Timothy EJ Behrens, University College London, United Kingdom

Publication history

  1. Received: December 9, 2015
  2. Accepted: March 3, 2016
  3. Accepted Manuscript published: March 7, 2016 (version 1)
  4. Version of Record published: March 16, 2016 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,096
    Page views
  • 803
    Downloads
  • 77
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brian F Sadacca
  2. Joshua L Jones
  3. Geoffrey Schoenbaum
(2016)
Midbrain dopamine neurons compute inferred and cached value prediction errors in a common framework
eLife 5:e13665.
https://doi.org/10.7554/eLife.13665
  1. Further reading

Further reading

    1. Neuroscience
    Bradley B Doll, Nathaniel D Daw
    Insight

    Evidence increasingly suggests that dopaminergic neurons play a more sophisticated role in predicting rewards than previously thought.

    1. Cell Biology
    2. Neuroscience
    Ge Gao, Shuyu Guo ... Gang Peng
    Research Article Updated

    Unbiased genetic screens implicated a number of uncharacterized genes in hearing loss, suggesting some biological processes required for auditory function remain unexplored. Loss of Kiaa1024L/Minar2, a previously understudied gene, caused deafness in mice, but how it functioned in the hearing was unclear. Here, we show that disruption of kiaa1024L/minar2 causes hearing loss in the zebrafish. Defects in mechanotransduction, longer and thinner hair bundles, and enlarged apical lysosomes in hair cells are observed in the kiaa1024L/minar2 mutant. In cultured cells, Kiaa1024L/Minar2 is mainly localized to lysosomes, and its overexpression recruits cholesterol and increases cholesterol labeling. Strikingly, cholesterol is highly enriched in the hair bundle membrane, and loss of kiaa1024L/minar2 reduces cholesterol localization to the hair bundles. Lowering cholesterol levels aggravates, while increasing cholesterol levels rescues the hair cell defects in the kiaa1024L/minar2 mutant. Therefore, cholesterol plays an essential role in hair bundles, and Kiaa1024L/Minar2 regulates cholesterol distribution and homeostasis to ensure normal hearing.