The modulation of savouring by prediction error and its effects on choice

  1. Kiyohito Iigaya  Is a corresponding author
  2. Giles W Story
  3. Zeb Kurth-Nelson
  4. Raymond J Dolan
  5. Peter Dayan
  1. University College London, United Kingdom

Abstract

When people anticipate uncertain future outcomes, they often prefer to know their fate in advance. Inspired by an idea in behavioral economics that the anticipation of rewards is itself attractive, we hypothesized that this preference of advance information arises because reward prediction errors carried by such information can boost the level of anticipation. We designed new empirical behavioral studies to test this proposal, and confirmed that subjects preferred advance reward information more strongly when they had to wait for rewards for a longer time. We formulated our proposal in a reinforcement-learning model, and we showed that our model accounts for a wide range of existing neuronal and behavioral data, without appealing to ambiguous notions such as an explicit value for information. We suggest that such boosted anticipation significantly drives risk-seeking behaviors, most pertinently in gambling.

Article and author information

Author details

  1. Kiyohito Iigaya

    Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
    For correspondence
    kiigaya@gatsby.ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Giles W Story

    The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Zeb Kurth-Nelson

    The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Raymond J Dolan

    The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Peter Dayan

    Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: Human subjects: All participants provided written informed consent and consent to publish prior to start of the experiment, which was approved by the Research Ethics Committee at University College London (UCL Research Ethics Reference: 3450/002)

Copyright

© 2016, Iigaya et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,222
    views
  • 632
    downloads
  • 78
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kiyohito Iigaya
  2. Giles W Story
  3. Zeb Kurth-Nelson
  4. Raymond J Dolan
  5. Peter Dayan
(2016)
The modulation of savouring by prediction error and its effects on choice
eLife 5:e13747.
https://doi.org/10.7554/eLife.13747

Share this article

https://doi.org/10.7554/eLife.13747

Further reading

    1. Neuroscience
    John P Grogan, Matthias Raemaekers ... Sanjay G Manohar
    Research Article

    Motivation depends on dopamine, but might be modulated by acetylcholine which influences dopamine release in the striatum, and amplifies motivation in animal studies. A corresponding effect in humans would be important clinically, since anticholinergic drugs are frequently used in Parkinson’s disease, a condition that can also disrupt motivation. Reward and dopamine make us more ready to respond, as indexed by reaction times (RT), and move faster, sometimes termed vigour. These effects may be controlled by preparatory processes that can be tracked using electroencephalography (EEG). We measured vigour in a placebo-controlled, double-blinded study of trihexyphenidyl (THP), a muscarinic antagonist, with an incentivised eye movement task and EEG. Participants responded faster and with greater vigour when incentives were high, but THP blunted these motivational effects, suggesting that muscarinic receptors facilitate invigoration by reward. Preparatory EEG build-up (contingent negative variation [CNV]) was strengthened by high incentives and by muscarinic blockade, although THP reduced the incentive effect. The amplitude of preparatory activity predicted both vigour and RT, although over distinct scalp regions; frontal activity predicted vigour, whereas a larger, earlier, central component predicted RT. The incentivisation of RT was partly mediated by the CNV, though vigour was not. Moreover, the CNV mediated the drug’s effect on dampening incentives, suggesting that muscarinic receptors underlie the motivational influence on this preparatory activity. Taken together, these findings show that a muscarinic blocker impairs motivated action in healthy people, and that medial frontal preparatory neural activity mediates this for RT.

    1. Neuroscience
    Samyogita Hardikar, Bronte Mckeown ... Jonathan Smallwood
    Research Article

    Complex macro-scale patterns of brain activity that emerge during periods of wakeful rest provide insight into the organisation of neural function, how these differentiate individuals based on their traits, and the neural basis of different types of self-generated thoughts. Although brain activity during wakeful rest is valuable for understanding important features of human cognition, its unconstrained nature makes it difficult to disentangle neural features related to personality traits from those related to the thoughts occurring at rest. Our study builds on recent perspectives from work on ongoing conscious thought that highlight the interactions between three brain networks – ventral and dorsal attention networks, as well as the default mode network. We combined measures of personality with state-of-the-art indices of ongoing thoughts at rest and brain imaging analysis and explored whether this ‘tri-partite’ view can provide a framework within which to understand the contribution of states and traits to observed patterns of neural activity at rest. To capture macro-scale relationships between different brain systems, we calculated cortical gradients to describe brain organisation in a low-dimensional space. Our analysis established that for more introverted individuals, regions of the ventral attention network were functionally more aligned to regions of the somatomotor system and the default mode network. At the same time, a pattern of detailed self-generated thought was associated with a decoupling of regions of dorsal attention from regions in the default mode network. Our study, therefore, establishes that interactions between attention systems and the default mode network are important influences on ongoing thought at rest and highlights the value of integrating contemporary perspectives on conscious experience when understanding patterns of brain activity at rest.