Blockade of glucagon signaling prevents or reverses diabetes onset only if residual β-cells persist

  1. Nicolas Damond
  2. Fabrizio Thorel
  3. Julie S Moyers
  4. Maureen J Charron
  5. Patricia M Vuguin
  6. Alvin C Powers
  7. Pedro L Herrera  Is a corresponding author
  1. University of Geneva, Switzerland
  2. Eli Lilly and Company, United States
  3. Albert Einstein College of Medicine, United States
  4. Columbia University, United States
  5. Vanderbilt University, United States

Abstract

Glucagon secretion dysregulation in diabetes fosters hyperglycemia. Recent studies report that mice lacking glucagon receptor (Gcgr-/-) do not develop diabetes following streptozotocin (STZ)-mediated ablation of insulin-producing β-cells. Here, we show that diabetes prevention in STZ-treated Gcgr-/- animals requires remnant insulin action originating from spared residual β-cells: these mice indeed became hyperglycemic after insulin receptor blockade. Accordingly, Gcgr-/- mice developed hyperglycemia after induction of a more complete, diphtheria toxin (DT)-induced β-cell loss, a situation of near-absolute insulin deficiency similar to type 1 diabetes. In addition, glucagon deficiency did not impair the natural capacity of ncy did not impair the natural capacity α-cells to reprogram into insulin production after extreme β-cell loss. α-to-β-cell conversion was improved in Gcgr-/- mice as a consequence of α-cell hyperplasia. Collectively, these results indicate that glucagon antagonism could i) be a useful adjuvant therapy in diabetes only when residual insulin action persists, and ii) help devising future β-cell regeneration therapies relying upon α-cell reprogramming.

Article and author information

Author details

  1. Nicolas Damond

    Department of Genetic Medicine, Development of the Faculty of Medicine, Institute of Genetics and Genomics in Geneva, Centre facultaire du diabète, University of Geneva, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  2. Fabrizio Thorel

    Department of Genetic Medicine, Development of the Faculty of Medicine, Institute of Genetics and Genomics in Geneva, Centre facultaire du diabète, University of Geneva, Geneva, Switzerland
    Competing interests
    No competing interests declared.
  3. Julie S Moyers

    Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, United States
    Competing interests
    Julie S Moyers, J.S.M. is an employee and shareholder of Eli Lilly and Company.
  4. Maureen J Charron

    Departments of Biochemistry, Medicine, and Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    No competing interests declared.
  5. Patricia M Vuguin

    Pediatric Endocrinology, Women's and Childrens Health, College of Physicians & Surgeons, Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  6. Alvin C Powers

    Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Department of Molecular Physiology, Vanderbilt University, Nashville, United States
    Competing interests
    No competing interests declared.
  7. Pedro L Herrera

    Department of Genetic Medicine, Development of the Faculty of Medicine, Institute of Genetics and Genomics in Geneva, Centre facultaire du diabète, University of Geneva, Geneva, Switzerland
    For correspondence
    Pedro.Herrera@unige.ch
    Competing interests
    No competing interests declared.

Ethics

Animal experimentation: All mice were housed and treated in accordance with the guidelines and regulations of the Direction Générale de la Santé, state of Geneva (license number GE/103/14).

Copyright

© 2016, Damond et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,616
    views
  • 850
    downloads
  • 66
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolas Damond
  2. Fabrizio Thorel
  3. Julie S Moyers
  4. Maureen J Charron
  5. Patricia M Vuguin
  6. Alvin C Powers
  7. Pedro L Herrera
(2016)
Blockade of glucagon signaling prevents or reverses diabetes onset only if residual β-cells persist
eLife 5:e13828.
https://doi.org/10.7554/eLife.13828

Share this article

https://doi.org/10.7554/eLife.13828

Further reading

    1. Biochemistry and Chemical Biology
    Yoshihisa Mimura, Tomoya Yasujima ... Hiroaki Yuasa
    Short Report

    The intestinal absorption of essential nutrients, especially those not readily biosynthesized, is a critical physiological process for maintaining homeostasis. Numerous studies have indicated that intestinal absorption is mediated by various membrane transporters. Citrate, a crucial bioactive compound produced as an intermediate in the Krebs cycle, is absorbed in the small intestine through carrier-mediated systems because of its high hydrophilicity. While the luminal absorption of citrate is mediated by Na+-dicarboxylate cotransporter 1 (NaDC1/SLC13A2), the mechanism governing the release of the transported citrate into the bloodstream remains unknown. Here, we explored the transporters responsible for intestinal citrate absorption at the basolateral membrane, focusing on highly expressed orphan transporters in the small intestine as candidates. Consequently, SLC35G1, originally identified as a partner of stromal interaction molecule 1, a cell surface transmembrane glycoprotein, was found to play a role in the intestinal absorption of citrate at the basolateral membrane. Furthermore, our results revealed that SLC35G1-mediated citrate transport was diminished by chloride ions at physiologically relevant extracellular concentrations. This suggests that SLC35G1, to our best knowledge, is the first transporter identified to be extremely sensitive to chloride ions among those functioning on the basolateral membrane of intestinal epithelial cells. This study provides valuable insights into the intestinal absorption of citrate and significantly contributes to elucidating the poorly understood molecular basis of the intestinal absorption system.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Lina Antenucci, Salla Virtanen ... Perttu Permi
    Research Article

    Orchestrated action of peptidoglycan (PG) synthetases and hydrolases is vital for bacterial growth and viability. Although the function of several PG synthetases and hydrolases is well understood, the function, regulation, and mechanism of action of PG hydrolases characterised as lysostaphin-like endopeptidases have remained elusive. Many of these M23 family members can hydrolyse glycyl-glycine peptide bonds and show lytic activity against Staphylococcus aureus whose PG contains a pentaglycine bridge, but their exact substrate specificity and hydrolysed bonds are still vaguely determined. In this work, we have employed NMR spectroscopy to study both the substrate specificity and the bond cleavage of the bactericide lysostaphin and the S. aureus PG hydrolase LytM. Yet, we provide substrate-level evidence for the functional role of these enzymes. Indeed, our results show that the substrate specificities of these structurally highly homologous enzymes are similar, but unlike observed earlier both LytM and lysostaphin prefer the D-Ala-Gly cross-linked part of mature peptidoglycan. However, we show that while lysostaphin is genuinely a glycyl-glycine hydrolase, LytM can also act as a D-alanyl-glycine endopeptidase.