A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes

  1. Michaela Gschweitl
  2. Anna Ulbricht
  3. Christopher A Barnes
  4. Radoslav I Enchev
  5. Ingrid Stoffel-Studer
  6. Nathalie Meyer-Schaller
  7. Jatta Huotari
  8. Yohei Yamauchi
  9. Urs F Greber
  10. Ari Helenius
  11. Matthias Peter  Is a corresponding author
  1. Eidgenössische Technische Hochschule Zürich, Switzerland
  2. Novo Nordisk Research Center, United States
  3. University of Basel, Switzerland
  4. nspm ltd, Switzerland
  5. University of Zurich, Switzerland

Abstract

Cullin-3 (CUL3)-based ubiquitin ligases regulate endosome maturation and trafficking of endocytic cargo to lysosomes in mammalian cells. Here, we report that these functions depend on SPOPL, a substrate-specific CUL3 adaptor. We find that SPOPL associates with endosomes and is required for both the formation of multivesicular bodies (MVBs) and the endocytic host cell entry of influenza A virus. In SPOPL-depleted cells, endosomes are enlarged and fail to acquire intraluminal vesicles (ILVs). We identify a critical substrate ubiquitinated by CUL3-SPOPL as EPS15, an endocytic adaptor that also associates with the ESCRT-0 complex members HRS and STAM on endosomes. Indeed, EPS15 is ubiquitinated in a SPOPL-dependent manner, and accumulates with HRS in cells lacking SPOPL. Together, our data indicates that a CUL3-SPOPL E3 ubiquitin ligase complex regulates endocytic trafficking and MVB formation by ubiquitinating and degrading EPS15 at endosomes, thereby influencing influenza A virus infection as well as degradation of EGFR and other EPS15 targets.

Article and author information

Author details

  1. Michaela Gschweitl

    Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Anna Ulbricht

    Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Christopher A Barnes

    Novo Nordisk Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Radoslav I Enchev

    Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Ingrid Stoffel-Studer

    Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Nathalie Meyer-Schaller

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Jatta Huotari

    nspm ltd, Meggen, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Yohei Yamauchi

    Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Urs F Greber

    Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Ari Helenius

    Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  11. Matthias Peter

    Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
    For correspondence
    matthias.peter@bc.biol.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Gschweitl et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,836
    views
  • 1,009
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michaela Gschweitl
  2. Anna Ulbricht
  3. Christopher A Barnes
  4. Radoslav I Enchev
  5. Ingrid Stoffel-Studer
  6. Nathalie Meyer-Schaller
  7. Jatta Huotari
  8. Yohei Yamauchi
  9. Urs F Greber
  10. Ari Helenius
  11. Matthias Peter
(2016)
A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes
eLife 5:e13841.
https://doi.org/10.7554/eLife.13841

Share this article

https://doi.org/10.7554/eLife.13841

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.