A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes

  1. Michaela Gschweitl
  2. Anna Ulbricht
  3. Christopher A Barnes
  4. Radoslav I Enchev
  5. Ingrid Stoffel-Studer
  6. Nathalie Meyer-Schaller
  7. Jatta Huotari
  8. Yohei Yamauchi
  9. Urs F Greber
  10. Ari Helenius
  11. Matthias Peter  Is a corresponding author
  1. Eidgenössische Technische Hochschule Zürich, Switzerland
  2. Novo Nordisk Research Center, United States
  3. University of Basel, Switzerland
  4. nspm ltd, Switzerland
  5. University of Zurich, Switzerland

Abstract

Cullin-3 (CUL3)-based ubiquitin ligases regulate endosome maturation and trafficking of endocytic cargo to lysosomes in mammalian cells. Here, we report that these functions depend on SPOPL, a substrate-specific CUL3 adaptor. We find that SPOPL associates with endosomes and is required for both the formation of multivesicular bodies (MVBs) and the endocytic host cell entry of influenza A virus. In SPOPL-depleted cells, endosomes are enlarged and fail to acquire intraluminal vesicles (ILVs). We identify a critical substrate ubiquitinated by CUL3-SPOPL as EPS15, an endocytic adaptor that also associates with the ESCRT-0 complex members HRS and STAM on endosomes. Indeed, EPS15 is ubiquitinated in a SPOPL-dependent manner, and accumulates with HRS in cells lacking SPOPL. Together, our data indicates that a CUL3-SPOPL E3 ubiquitin ligase complex regulates endocytic trafficking and MVB formation by ubiquitinating and degrading EPS15 at endosomes, thereby influencing influenza A virus infection as well as degradation of EGFR and other EPS15 targets.

Article and author information

Author details

  1. Michaela Gschweitl

    Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Anna Ulbricht

    Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Christopher A Barnes

    Novo Nordisk Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Radoslav I Enchev

    Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Ingrid Stoffel-Studer

    Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Nathalie Meyer-Schaller

    Department of Biomedicine, University of Basel, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Jatta Huotari

    nspm ltd, Meggen, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Yohei Yamauchi

    Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Urs F Greber

    Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Ari Helenius

    Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  11. Matthias Peter

    Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
    For correspondence
    matthias.peter@bc.biol.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Gschweitl et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,831
    views
  • 1,007
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michaela Gschweitl
  2. Anna Ulbricht
  3. Christopher A Barnes
  4. Radoslav I Enchev
  5. Ingrid Stoffel-Studer
  6. Nathalie Meyer-Schaller
  7. Jatta Huotari
  8. Yohei Yamauchi
  9. Urs F Greber
  10. Ari Helenius
  11. Matthias Peter
(2016)
A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes
eLife 5:e13841.
https://doi.org/10.7554/eLife.13841

Share this article

https://doi.org/10.7554/eLife.13841

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Katherine A Senn, Karli A Lipinski ... Aaron A Hoskins
    Research Article

    Pre-mRNA splicing is catalyzed in two steps: 5ʹ splice site (SS) cleavage and exon ligation. A number of proteins transiently associate with spliceosomes to specifically impact these steps (first and second step factors). We recently identified Fyv6 (FAM192A in humans) as a second step factor in Saccharomyces cerevisiae; however, we did not determine how widespread Fyv6’s impact is on the transcriptome. To answer this question, we have used RNA sequencing (RNA-seq) to analyze changes in splicing. These results show that loss of Fyv6 results in activation of non-consensus, branch point (BP) proximal 3ʹ SS transcriptome-wide. To identify the molecular basis of these observations, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of a yeast product complex spliceosome containing Fyv6 at 2.3 Å. The structure reveals that Fyv6 is the only second step factor that contacts the Prp22 ATPase and that Fyv6 binding is mutually exclusive with that of the first step factor Yju2. We then use this structure to dissect Fyv6 functional domains and interpret results of a genetic screen for fyv6Δ suppressor mutations. The combined transcriptomic, structural, and genetic studies allow us to propose a model in which Yju2/Fyv6 exchange facilitates exon ligation and Fyv6 promotes usage of consensus, BP distal 3ʹ SS.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Eyal Paz, Sahil Jain ... Abdussalam Azem
    Research Article

    TIMM50, an essential TIM23 complex subunit, is suggested to facilitate the import of ~60% of the mitochondrial proteome. In this study, we characterized a TIMM50 disease-causing mutation in human fibroblasts and noted significant decreases in TIM23 core protein levels (TIMM50, TIMM17A/B, and TIMM23). Strikingly, TIMM50 deficiency had no impact on the steady-state levels of most of its putative substrates, suggesting that even low levels of a functional TIM23 complex are sufficient to maintain the majority of TIM23 complex-dependent mitochondrial proteome. As TIMM50 mutations have been linked to severe neurological phenotypes, we aimed to characterize TIMM50 defects in manipulated mammalian neurons. TIMM50 knockdown in mouse neurons had a minor effect on the steady state level of most of the mitochondrial proteome, supporting the results observed in patient fibroblasts. Amongst the few affected TIM23 substrates, a decrease in the steady state level of components of the intricate oxidative phosphorylation and mitochondrial ribosome complexes was evident. This led to declined respiration rates in fibroblasts and neurons, reduced cellular ATP levels, and defective mitochondrial trafficking in neuronal processes, possibly contributing to the developmental defects observed in patients with TIMM50 disease. Finally, increased electrical activity was observed in TIMM50 deficient mice neuronal cells, which correlated with reduced levels of KCNJ10 and KCNA2 plasma membrane potassium channels, likely underlying the patients’ epileptic phenotype.