Secretion of protein disulphide isomerase AGR2 confers tumorigenic properties

  1. Delphine Fessart  Is a corresponding author
  2. Charlotte Domblides
  3. Tony Avril
  4. Leif A Eriksson
  5. Hugues Begueret
  6. Raphael Pineau
  7. Camille Malrieux
  8. Nathalie Dugot-Senant
  9. Carlo Lucchesi
  10. Eric Chevet
  11. Frederic Delom
  1. Université de Bordeaux, France
  2. University of Rennes 1, France
  3. University of Gothenburg, Sweden
  4. Hôpital Haut-Lévêque, France
  5. Bergonié Cancer Institute, France

Abstract

The extracellular matrix (ECM) plays an instrumental role in determining the spatial orientation of epithelial polarity and the formation of lumens in glandular tissues during morphogenesis. Here, we show that the Endoplasmic Reticulum (ER)-resident protein anterior gradient-2 (AGR2), a soluble protein-disulfide isomerase involved in ER protein folding and quality control, is secreted and interacts with the ECM. Extracellular AGR2 (eAGR2) is a microenvironmental regulator of epithelial tissue architecture, which plays a role in the preneoplastic phenotype and contributes to epithelial tumorigenicity. Indeed, eAGR2, is secreted as a functionally active protein independently of its thioredoxin-like domain (CXXS) and of its ER-retention domain (KTEL), and is sufficient, by itself, to promote the acquisition of invasive and metastatic features. Therefore, we conclude that eAGR2 plays an extracellular role independent of its ER function and we elucidate this gain-of-function as a novel and unexpected critical ECM microenvironmental pro-oncogenic regulator of epithelial morphogenesis and tumorigenesis.

Article and author information

Author details

  1. Delphine Fessart

    Université de Bordeaux, Bordeaux, France
    For correspondence
    delphine.fessart@yahoo.fr
    Competing interests
    The authors declare that no competing interests exist.
  2. Charlotte Domblides

    Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Tony Avril

    Oncogenesis, Stress, Signaling, University of Rennes 1, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Leif A Eriksson

    Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Hugues Begueret

    Hôpital Haut-Lévêque, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Raphael Pineau

    Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Camille Malrieux

    Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Nathalie Dugot-Senant

    Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Carlo Lucchesi

    Bergonié Cancer Institute, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Eric Chevet

    Oncogenesis, Stress, Signaling, University of Rennes 1, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Frederic Delom

    Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal procedures met the European Community Directive guidelines (Agreement B33-522-2/ Number DIR 1322) and were approved by the ethical committee from Bordeaux University.

Human subjects: Samples of human lung cancer tissues were obtained from the Haut-Leveque University Hospital (Bordeaux, France) and reviewed by expert pathologist in the field (H. Begueret). These procedures were approved by the Institutional Review Board at Haut-Leveque (NFS96900 Certification).

Copyright

© 2016, Fessart et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,239
    views
  • 1,249
    downloads
  • 68
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Delphine Fessart
  2. Charlotte Domblides
  3. Tony Avril
  4. Leif A Eriksson
  5. Hugues Begueret
  6. Raphael Pineau
  7. Camille Malrieux
  8. Nathalie Dugot-Senant
  9. Carlo Lucchesi
  10. Eric Chevet
  11. Frederic Delom
(2016)
Secretion of protein disulphide isomerase AGR2 confers tumorigenic properties
eLife 5:e13887.
https://doi.org/10.7554/eLife.13887

Share this article

https://doi.org/10.7554/eLife.13887

Further reading

    1. Cancer Biology
    2. Evolutionary Biology
    Susanne Tilk, Judith Frydman ... Dmitri A Petrov
    Research Article

    In asexual populations that don’t undergo recombination, such as cancer, deleterious mutations are expected to accrue readily due to genome-wide linkage between mutations. Despite this mutational load of often thousands of deleterious mutations, many tumors thrive. How tumors survive the damaging consequences of this mutational load is not well understood. Here, we investigate the functional consequences of mutational load in 10,295 human tumors by quantifying their phenotypic response through changes in gene expression. Using a generalized linear mixed model (GLMM), we find that high mutational load tumors up-regulate proteostasis machinery related to the mitigation and prevention of protein misfolding. We replicate these expression responses in cancer cell lines and show that the viability in high mutational load cancer cells is strongly dependent on complexes that degrade and refold proteins. This indicates that the upregulation of proteostasis machinery is causally important for high mutational burden tumors and uncovers new therapeutic vulnerabilities.

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.