Secretion of protein disulphide isomerase AGR2 confers tumorigenic properties

  1. Delphine Fessart  Is a corresponding author
  2. Charlotte Domblides
  3. Tony Avril
  4. Leif A Eriksson
  5. Hugues Begueret
  6. Raphael Pineau
  7. Camille Malrieux
  8. Nathalie Dugot-Senant
  9. Carlo Lucchesi
  10. Eric Chevet
  11. Frederic Delom
  1. Université de Bordeaux, France
  2. University of Rennes 1, France
  3. University of Gothenburg, Sweden
  4. Hôpital Haut-Lévêque, France
  5. Bergonié Cancer Institute, France

Abstract

The extracellular matrix (ECM) plays an instrumental role in determining the spatial orientation of epithelial polarity and the formation of lumens in glandular tissues during morphogenesis. Here, we show that the Endoplasmic Reticulum (ER)-resident protein anterior gradient-2 (AGR2), a soluble protein-disulfide isomerase involved in ER protein folding and quality control, is secreted and interacts with the ECM. Extracellular AGR2 (eAGR2) is a microenvironmental regulator of epithelial tissue architecture, which plays a role in the preneoplastic phenotype and contributes to epithelial tumorigenicity. Indeed, eAGR2, is secreted as a functionally active protein independently of its thioredoxin-like domain (CXXS) and of its ER-retention domain (KTEL), and is sufficient, by itself, to promote the acquisition of invasive and metastatic features. Therefore, we conclude that eAGR2 plays an extracellular role independent of its ER function and we elucidate this gain-of-function as a novel and unexpected critical ECM microenvironmental pro-oncogenic regulator of epithelial morphogenesis and tumorigenesis.

Article and author information

Author details

  1. Delphine Fessart

    Université de Bordeaux, Bordeaux, France
    For correspondence
    delphine.fessart@yahoo.fr
    Competing interests
    The authors declare that no competing interests exist.
  2. Charlotte Domblides

    Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Tony Avril

    Oncogenesis, Stress, Signaling, University of Rennes 1, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Leif A Eriksson

    Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Hugues Begueret

    Hôpital Haut-Lévêque, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Raphael Pineau

    Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Camille Malrieux

    Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Nathalie Dugot-Senant

    Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Carlo Lucchesi

    Bergonié Cancer Institute, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Eric Chevet

    Oncogenesis, Stress, Signaling, University of Rennes 1, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Frederic Delom

    Université de Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: All animal procedures met the European Community Directive guidelines (Agreement B33-522-2/ Number DIR 1322) and were approved by the ethical committee from Bordeaux University.

Human subjects: Samples of human lung cancer tissues were obtained from the Haut-Leveque University Hospital (Bordeaux, France) and reviewed by expert pathologist in the field (H. Begueret). These procedures were approved by the Institutional Review Board at Haut-Leveque (NFS96900 Certification).

Copyright

© 2016, Fessart et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,315
    views
  • 1,257
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Delphine Fessart
  2. Charlotte Domblides
  3. Tony Avril
  4. Leif A Eriksson
  5. Hugues Begueret
  6. Raphael Pineau
  7. Camille Malrieux
  8. Nathalie Dugot-Senant
  9. Carlo Lucchesi
  10. Eric Chevet
  11. Frederic Delom
(2016)
Secretion of protein disulphide isomerase AGR2 confers tumorigenic properties
eLife 5:e13887.
https://doi.org/10.7554/eLife.13887

Share this article

https://doi.org/10.7554/eLife.13887

Further reading

    1. Cancer Biology
    Qianqian Ju, Wenjing Sheng ... Cheng Sun
    Research Article

    TAK1 is a serine/threonine protein kinase that is a key regulator in a wide variety of cellular processes. However, the functions and mechanisms involved in cancer metastasis are still not well understood. Here, we found that TAK1 knockdown promoted esophageal squamous cancer carcinoma (ESCC) migration and invasion, whereas TAK1 overexpression resulted in the opposite outcome. These in vitro findings were recapitulated in vivo in a xenograft metastatic mouse model. Mechanistically, co-immunoprecipitation and mass spectrometry demonstrated that TAK1 interacted with phospholipase C epsilon 1 (PLCE1) and phosphorylated PLCE1 at serine 1060 (S1060). Functional studies revealed that phosphorylation at S1060 in PLCE1 resulted in decreased enzyme activity, leading to the repression of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis. As a result, the degradation products of PIP2 including diacylglycerol (DAG) and inositol IP3 were reduced, which thereby suppressed signal transduction in the axis of PKC/GSK-3β/β-Catenin. Consequently, expression of cancer metastasis-related genes was impeded by TAK1. Overall, our data indicate that TAK1 plays a negative role in ESCC metastasis, which depends on the TAK1-induced phosphorylation of PLCE1 at S1060.

    1. Cancer Biology
    2. Cell Biology
    Rui Hua, Jean X Jiang
    Insight

    Cell crowding causes high-grade breast cancer cells to become more invasive by activating a molecular switch that causes the cells to shrink and spread.