Activation of individual L1 retrotransposon instances is restricted to cell-type dependent permissive loci

  1. Claude Philippe
  2. Dulce B Vargas-Landin
  3. Aurelien J Doucet
  4. Dominic van Essen
  5. Jorge Vera-Otarola
  6. Monika Kuciak
  7. Antoine Corbin
  8. Pilvi Nigumann
  9. Gaël Cristofari  Is a corresponding author
  1. Institute for Research on Cancer and Aging of Nice, France
  2. Institute for Research on Cancer and Aging of Nice, INSERM U1081, CNRS UMR 7284, University of Nice-Sophia-Antipolis, France
  3. 1Institute for Research on Cancer and Aging of Nice, France
  4. Ecole Normale Supérieure de Lyon, France

Abstract

LINE-1 (L1) retrotransposons represent approximately one sixth of the human genome, but only the human-specific L1HS-Ta subfamily acts as an endogenous mutagen in modern humans, reshaping both somatic and germline genomes. Due to their high levels of sequence identity and the existence of many polymorphic insertions absent from the reference genome, the transcriptional activation of individual genomic L1HS-Ta copies remains poorly understood. Here we comprehensively mapped fixed and polymorphic L1HS-Ta copies in 12 commonly-used somatic cell lines, and identified transcriptional and epigenetic signatures allowing the unambiguous identification of active L1HS-Ta copies in their genomic context. Strikingly, only a very restricted subset of L1HS-Ta loci - some being polymorphic among individuals - significantly contributes to the bulk of L1 expression, and these loci are differentially regulated among distinct cell lines. Thus, our data support a local model of L1 transcriptional activation in somatic cells, governed by individual-, locus-, and cell-type-specific determinants.

Article and author information

Author details

  1. Claude Philippe

    INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Dulce B Vargas-Landin

    INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Aurelien J Doucet

    Faculty of Medicine, Institute for Research on Cancer and Aging of Nice, INSERM U1081, CNRS UMR 7284, University of Nice-Sophia-Antipolis, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Dominic van Essen

    INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Jorge Vera-Otarola

    INSERM U1081, CNRS UMR 7284, 1Institute for Research on Cancer and Aging of Nice, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Monika Kuciak

    Faculty of Medicine, Institute for Research on Cancer and Aging of Nice, INSERM U1081, CNRS UMR 7284, University of Nice-Sophia-Antipolis, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Antoine Corbin

    Ecole Normale Supérieure de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Pilvi Nigumann

    INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Gaël Cristofari

    INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France
    For correspondence
    Gael.Cristofari@unice.fr
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Philippe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,729
    views
  • 1,254
    downloads
  • 130
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Claude Philippe
  2. Dulce B Vargas-Landin
  3. Aurelien J Doucet
  4. Dominic van Essen
  5. Jorge Vera-Otarola
  6. Monika Kuciak
  7. Antoine Corbin
  8. Pilvi Nigumann
  9. Gaël Cristofari
(2016)
Activation of individual L1 retrotransposon instances is restricted to cell-type dependent permissive loci
eLife 5:e13926.
https://doi.org/10.7554/eLife.13926

Share this article

https://doi.org/10.7554/eLife.13926

Further reading

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Robyn D Moir, Emilio Merheb ... Ian M Willis
    Research Article

    Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ting-Wen Chen, Hsiao-Wei Liao ... Chung-Te Chang
    Research Article

    The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.