Activation of individual L1 retrotransposon instances is restricted to cell-type dependent permissive loci

  1. Claude Philippe
  2. Dulce B Vargas-Landin
  3. Aurelien J Doucet
  4. Dominic van Essen
  5. Jorge Vera-Otarola
  6. Monika Kuciak
  7. Antoine Corbin
  8. Pilvi Nigumann
  9. Gaël Cristofari  Is a corresponding author
  1. Institute for Research on Cancer and Aging of Nice, France
  2. Institute for Research on Cancer and Aging of Nice, INSERM U1081, CNRS UMR 7284, University of Nice-Sophia-Antipolis, France
  3. 1Institute for Research on Cancer and Aging of Nice, France
  4. Ecole Normale Supérieure de Lyon, France

Abstract

LINE-1 (L1) retrotransposons represent approximately one sixth of the human genome, but only the human-specific L1HS-Ta subfamily acts as an endogenous mutagen in modern humans, reshaping both somatic and germline genomes. Due to their high levels of sequence identity and the existence of many polymorphic insertions absent from the reference genome, the transcriptional activation of individual genomic L1HS-Ta copies remains poorly understood. Here we comprehensively mapped fixed and polymorphic L1HS-Ta copies in 12 commonly-used somatic cell lines, and identified transcriptional and epigenetic signatures allowing the unambiguous identification of active L1HS-Ta copies in their genomic context. Strikingly, only a very restricted subset of L1HS-Ta loci - some being polymorphic among individuals - significantly contributes to the bulk of L1 expression, and these loci are differentially regulated among distinct cell lines. Thus, our data support a local model of L1 transcriptional activation in somatic cells, governed by individual-, locus-, and cell-type-specific determinants.

Article and author information

Author details

  1. Claude Philippe

    INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Dulce B Vargas-Landin

    INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Aurelien J Doucet

    Faculty of Medicine, Institute for Research on Cancer and Aging of Nice, INSERM U1081, CNRS UMR 7284, University of Nice-Sophia-Antipolis, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Dominic van Essen

    INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Jorge Vera-Otarola

    INSERM U1081, CNRS UMR 7284, 1Institute for Research on Cancer and Aging of Nice, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Monika Kuciak

    Faculty of Medicine, Institute for Research on Cancer and Aging of Nice, INSERM U1081, CNRS UMR 7284, University of Nice-Sophia-Antipolis, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Antoine Corbin

    Ecole Normale Supérieure de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Pilvi Nigumann

    INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Gaël Cristofari

    INSERM U1081, CNRS UMR 7284, Institute for Research on Cancer and Aging of Nice, Nice, France
    For correspondence
    Gael.Cristofari@unice.fr
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Philippe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,846
    views
  • 1,263
    downloads
  • 132
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Claude Philippe
  2. Dulce B Vargas-Landin
  3. Aurelien J Doucet
  4. Dominic van Essen
  5. Jorge Vera-Otarola
  6. Monika Kuciak
  7. Antoine Corbin
  8. Pilvi Nigumann
  9. Gaël Cristofari
(2016)
Activation of individual L1 retrotransposon instances is restricted to cell-type dependent permissive loci
eLife 5:e13926.
https://doi.org/10.7554/eLife.13926

Share this article

https://doi.org/10.7554/eLife.13926

Further reading

    1. Chromosomes and Gene Expression
    Carlos Moreno-Yruela, Beat Fierz
    Insight

    Specialized magnetic beads that bind target proteins to a cryogenic electron microscopy grid make it possible to study the structure of protein complexes from dilute samples.

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.