High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals

  1. Luciano Marcon
  2. Xavier Diego
  3. James Sharpe
  4. Patrick Müller  Is a corresponding author
  1. Friedrich Miescher Laboratory of the Max Planck Society, Germany
  2. The Barcelona Institute of Science and Technology, Spain

Abstract

The reaction-diffusion model explains how identical cells can self-organize to form spatial patterns. It has been suggested that extracellular signaling molecules with different diffusion coefficients underlie this model, but the contribution of cell-autonomous signaling components is largely unknown. We developed an automated mathematical analysis to derive a catalog of realistic reaction-diffusion networks. Our analysis reveals that in the presence of cell-autonomous factors, networks can form a pattern for any combination of diffusion coefficients. We provide a software to explore these networks and to constrain topologies with qualitative and quantitative experimental data. We use the software to examine the self-organizing networks that control embryonic axis specification and digit patterning. Finally, we demonstrate how existing synthetic circuits can be extended with additional feedbacks to form reaction-diffusion systems. Our study offers a new theoretical framework to understand multicellular pattern formation and enables the wide-spread use of mathematical biology to engineer synthetic patterning systems.

Article and author information

Author details

  1. Luciano Marcon

    Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Xavier Diego

    EMBL-CRG Systems Biology Research Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. James Sharpe

    EMBL-CRG Systems Biology Research Unit, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Patrick Müller

    Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
    For correspondence
    pmueller@tuebingen.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Naama Barkai, Weizmann Institute of Science, Israel

Version history

  1. Received: December 23, 2015
  2. Accepted: April 7, 2016
  3. Accepted Manuscript published: April 8, 2016 (version 1)
  4. Accepted Manuscript updated: April 12, 2016 (version 2)
  5. Version of Record published: June 27, 2016 (version 3)

Copyright

© 2016, Marcon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,417
    views
  • 1,459
    downloads
  • 114
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Luciano Marcon
  2. Xavier Diego
  3. James Sharpe
  4. Patrick Müller
(2016)
High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals
eLife 5:e14022.
https://doi.org/10.7554/eLife.14022

Share this article

https://doi.org/10.7554/eLife.14022

Further reading

    1. Computational and Systems Biology
    Iván Plaza-Menacho
    Insight

    A study of two enzymes in the brain reveals new insights into how redox reactions regulate the activity of protein kinases.

    1. Computational and Systems Biology
    2. Epidemiology and Global Health
    Javier I Ottaviani, Virag Sagi-Kiss ... Gunter GC Kuhnle
    Research Article

    The chemical composition of foods is complex, variable, and dependent on many factors. This has a major impact on nutrition research as it foundationally affects our ability to adequately assess the actual intake of nutrients and other compounds. In spite of this, accurate data on nutrient intake are key for investigating the associations and causal relationships between intake, health, and disease risk at the service of developing evidence-based dietary guidance that enables improvements in population health. Here, we exemplify the importance of this challenge by investigating the impact of food content variability on nutrition research using three bioactives as model: flavan-3-ols, (–)-epicatechin, and nitrate. Our results show that common approaches aimed at addressing the high compositional variability of even the same foods impede the accurate assessment of nutrient intake generally. This suggests that the results of many nutrition studies using food composition data are potentially unreliable and carry greater limitations than commonly appreciated, consequently resulting in dietary recommendations with significant limitations and unreliable impact on public health. Thus, current challenges related to nutrient intake assessments need to be addressed and mitigated by the development of improved dietary assessment methods involving the use of nutritional biomarkers.