DYT1 dystonia increases risk taking in humans

  1. David Arkadir
  2. Angela Radulescu
  3. Deborah Raymond
  4. Naomi Lunar
  5. Susan B Bressman
  6. Pietro Mazzoni
  7. Yael Niv  Is a corresponding author
  1. Hadassah Medical Center and the Hebrew University, Israel
  2. Princeton University, United States
  3. Beth Israel Medical Center, United States
  4. Columbia University, United States

Abstract

It has been difficult to link synaptic modification to overt behavioral changes. Rodent models of DYT1 dystonia, a single-mutation motor disorder, demonstrate increased long-term potentiation and decreased long-term depression in corticostriatal synapses. Computationally, such asymmetric learning predicts risk taking in probabilistic tasks. Here we demonstrate abnormal risk taking in DYT1 dystonia patients, which is correlated with disease severity, thereby supporting striatal plasticity in shaping choice behavior in humans.

Article and author information

Author details

  1. David Arkadir

    Department of Neurology, Hadassah Medical Center, Hadassah Medical Center and the Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Angela Radulescu

    Psychology Department, Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Deborah Raymond

    Department of Neurology, Beth Israel Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Naomi Lunar

    Department of Neurology, Beth Israel Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Susan B Bressman

    Department of Neurology, Beth Israel Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Pietro Mazzoni

    The Neurological Institute, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yael Niv

    Psychology Department, Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    yael@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Rui M Costa, Fundação Champalimaud, Portugal

Ethics

Human subjects: All participants gave informed consent and the study was approved by the Institutional Review Boards of Columbia University, Beth Israel Medical Center, and Princeton University.

Version history

  1. Received: January 2, 2016
  2. Accepted: May 28, 2016
  3. Accepted Manuscript published: June 1, 2016 (version 1)
  4. Accepted Manuscript updated: June 2, 2016 (version 2)
  5. Version of Record published: July 19, 2016 (version 3)

Copyright

© 2016, Arkadir et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,414
    Page views
  • 335
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Arkadir
  2. Angela Radulescu
  3. Deborah Raymond
  4. Naomi Lunar
  5. Susan B Bressman
  6. Pietro Mazzoni
  7. Yael Niv
(2016)
DYT1 dystonia increases risk taking in humans
eLife 5:e14155.
https://doi.org/10.7554/eLife.14155

Share this article

https://doi.org/10.7554/eLife.14155

Further reading

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

    1. Medicine
    2. Neuroscience
    Luisa Fassi, Shachar Hochman ... Roi Cohen Kadosh
    Research Article

    In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual’s subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants’ subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.