1. Physics of Living Systems
  2. Microbiology and Infectious Disease
Download icon

Phototaxis: Life in focus

  1. Carol Dieckmann  Is a corresponding author
  2. Telsa Mittelmeier
  1. University of Arizona, United States
  • Cited 4
  • Views 1,523
  • Annotations
Cite this article as: eLife 2016;5:e14169 doi: 10.7554/eLife.14169


Single-celled photosynthetic bacteria determine the direction of incoming light by acting as lenses.

Main text

Land plants are restricted to the location in which they germinate and grow, and individual plants are at the mercy of the light conditions where a given seed lands. However, some single-celled photosynthetic organisms exhibit behavior known as “phototaxis” that involves moving in response to local light conditions (Gualteri, 2001). For example, the green alga, Chlamydomonas reinhardtii, can swim toward light to increase photosynthesis, but it can also swim away from bright light to avoid damage to molecular complexes required for photosynthesis (Foster and Smyth, 1980).

What are the minimal requirements for phototaxis? First, the organism must have a molecule that detects light. In most algal systems these photoreceptors act as both a light receptor and as an ion channel to trigger downstream signal transduction, similar to the rhodopsins found in bacteria (Nagel et al., 2005). The second requirement for phototaxis is motility. The third requirement is the ability to determine the direction of the incoming light, so that the cell can respond by moving in the appropriate direction.

This final requirement, “knowing where the light is”, has been solved by evolution in a variety of ways in different organisms. Now, in eLife, Conrad Mullineaux, Annegret Wilde and co-workers – including Nils Schuergers as first author – report that in a genus of bacteria called Synechocystis, the cells themselves act as lenses that can focus light (Schuergers et al., 2016). They use a combination of high-end microscopy and materials science to show that light hitting the convex surface of the cell is focused by the refractive properties of the cell body into a spot on the opposite side of the cell.

How does focusing light result in directional movement? To move in a given direction, some kind of asymmetry must be established in the cell. In Synechocystis, motility relies on tiny cell-surface projections called pili that grab the substrate and pull the cell forward, before releasing it and starting another round of grabbing and pulling. Schuergers et al. – who are based in Freiburg, Karlsruhe, London and Porto – found that the cells move away from the focused spot, toward the external light source. The required asymmetry is established by motor proteins that drive assembly of the pili, which cluster on the side of the cell away from the focused spot. The photoreceptors, on the other hand, are evenly distributed in the cell membrane.

By contrast, in other single-celled systems, such as Chlamydomonas and other eukaryotic algae, the flagella responsible for the movement are fixed at one end of the cell by the basal bodies from which they extend (Marshall, 2008). Thus, to provide useful information for directional movement, the photoreceptors must be clustered in one location in the cell, in organelles called eyespots. The position of the eyespot relative to the flagella is fixed by the asymmetric properties of the microtubule cytoskeleton established by the basal bodies (Holmes and Dutcher, 1989; Kamiya and Witman, 1984). Additionally, elaborate light-absorbing structures, often provided by the chloroplast, block light traveling through the cell (Kawai and Kreimer, 2000).

Why did such complicated phototaxis systems evolve in eukaryotic algae? Perhaps having the flagella fixed at one end of primordial cells dictated first the clustering of the photoreceptors, followed by the development of the variety of “light-blocking” systems in different species, which often include structures evolved from the cyanobacterium ancestor engulfed by the host cell.

That cells could act as lenses was proposed previously as an explanation for the phototactic behavior observed in colorless single-celled algae (Sineshchekov et al., 1994). And recently it was shown that the Chlamydomonas-like cells that comprise multicellular Volvox colonies are lenses (Kessler et al., 2015). These cells focus light most acutely a few cell diameters away. Kessler et al. suggested that this light-focusing ability of individual cells influenced the evolutionary path from single cells to the more complex volvocine algae containing thousands of cells.

The work of Schuergers et al. is the first truly elegant demonstration of “lensing” by a bacterial cell. These data are also a powerful reminder of the influence of light on life. Photoreceptors have evolved to capture photons and signal transduction pathways have evolved to allow cells to harness their energy. More pointedly, this work reminds us that light is directional and can be absorbed, reflected and refracted by interactions with living cells. This is a beautiful demonstration of the intersection of physics and biology, not only at the cellular level, but at the experimental level as well.

Single-celled photosynthetic bacteria acting as lenses.

Schuergers et al. illuminated Synechocystis cells on an agar surface with a light source from the direction marked with a red arrow. Each cell, acting as a lens, focused the light on the rear edge of the cell (white arrows), and moved toward the light. A strong laser light from above (red circle in center), caused cells entering the small laser-illuminated area on the agar to reverse direction. (See figure 4 in Schuergers et al., 2016 for full details).


    1. Foster KW
    2. Smyth RD
    Light antennas in phototactic algae
    Microbiological Reviews 44:572–630.
    1. Holmes JA
    2. Dutcher SK
    Cellular asymmetry in chlamydomonas reinhardtii
    Journal of Cell Science 94:273–285.
  1. Book
    1. Kawai K
    2. Kreimer G
    Sensory mechanisms: phototaxes and light perception in algae
    In: Leadbetter BSC, Green JC, editors. Flagellates: unity, diversity and evolution. Boca Raton: CRC Press. . p 124–145.
  2. Book
    1. Kessler JO
    2. Nedelcu AM
    3. Solari CA
    4. Shelton DE
    (2015) Cells acting as lenses: a possible role for light in the evolution of morphological asymmetry in multicellular volvocine algae.
    In: Ruiz-Trillo I, Nedelcu AM, editors. Evolutionary transitions to multicellular life. Dordrecht, Netherlands: Springer. p 225–243.

Article and author information

Author details

  1. Carol Dieckmann

    Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6913-6913
  2. Telsa Mittelmeier

    Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2894-3986

Publication history

  1. Version of Record published: February 9, 2016 (version 1)


© 2016, Dieckmann et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


  • 1,523
    Page views
  • 188
  • 4

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Kelsey M Hallinen et al.
    Research Article

    We investigated the neural representation of locomotion in the nematode C. elegans by recording population calcium activity during movement. We report that population activity more accurately decodes locomotion than any single neuron. Relevant signals are distributed across neurons with diverse tunings to locomotion. Two largely distinct subpopulations are informative for decoding velocity and curvature, and different neurons’ activities contribute features relevant for different aspects of a behavior or different instances of a behavioral motif. To validate our measurements, we labeled neurons AVAL and AVAR and found that their activity exhibited expected transients during backward locomotion. Finally, we compared population activity during movement and immobilization. Immobilization alters the correlation structure of neural activity and its dynamics. Some neurons positively correlated with AVA during movement become negatively correlated during immobilization and vice versa. This work provides needed experimental measurements that inform and constrain ongoing efforts to understand population dynamics underlying locomotion in C. elegans.

    1. Physics of Living Systems
    2. Structural Biology and Molecular Biophysics
    Saravanan Palani et al.
    Research Article Updated

    Actin filaments are central to numerous biological processes in all domains of life. Driven by the interplay with molecular motors, actin binding and actin modulating proteins, the actin cytoskeleton exhibits a variety of geometries. This includes structures with a curved geometry such as axon-stabilizing actin rings, actin cages around mitochondria and the cytokinetic actomyosin ring, which are generally assumed to be formed by short linear filaments held together by actin cross-linkers. However, whether individual actin filaments in these structures could be curved and how they may assume a curved geometry remains unknown. Here, we show that ‘curly’, a region from the IQGAP family of proteins from three different organisms, comprising the actin-binding calponin-homology domain and a C-terminal unstructured domain, stabilizes individual actin filaments in a curved geometry when anchored to lipid membranes. Although F-actin is semi-flexible with a persistence length of ~10 μm, binding of mobile curly within lipid membranes generates actin filament arcs and full rings of high curvature with radii below 1 μm. Higher rates of fully formed actin rings are observed in the presence of the actin-binding coiled-coil protein tropomyosin and when actin is directly polymerized on lipid membranes decorated with curly. Strikingly, curly induced actin filament rings contract upon the addition of muscle myosin II filaments and expression of curly in mammalian cells leads to highly curved actin structures in the cytoskeleton. Taken together, our work identifies a new mechanism to generate highly curved actin filaments, which opens a range of possibilities to control actin filament geometries, that can be used, for example, in designing synthetic cytoskeletal structures.