Constitutive turnover of histone H2A.Z at yeast promoters requires the preinitiation complex

  1. Michael Tramantano
  2. Lu Sun
  3. Christy Au
  4. Daniel Labuz
  5. Zhimin Liu
  6. Mindy Chou
  7. Chen Shen
  8. Ed Luk  Is a corresponding author
  1. Stony Brook University, United States
  2. Cold Spring Harbor Laboratory, United States

Abstract

The assembly of the preinitiation complex (PIC) occurs upstream of the +1 nucleosome which, in yeast, obstructs the transcription start site and is frequently assembled with the histone variant H2A.Z. To understand the contribution of the transcription machinery in the disassembly of the +1 H2A.Z nucleosome, conditional mutants were used to block PIC assembly. A quantitative ChIP-seq approach, which allows detection of global occupancy change, was employed to measure H2A.Z occupancy. Blocking PIC assembly resulted in promoter-specific H2A.Z accumulation, indicating that the PIC is required to evict H2A.Z. By contrast, H2A.Z eviction was unaffected upon depletion of INO80, a remodeler previously reported to displace nucleosomal H2A.Z. Robust PIC-dependent H2A.Z eviction was observed at active and infrequently transcribed genes, indicating that constitutive H2A.Z turnover is a general phenomenon. Finally, sites with strong H2A.Z turnover precisely mark transcript starts, providing a new metric for identifying cryptic and alternative sites of initiation.

Data availability

The following data sets were generated
The following previously published data sets were used
    1. Rhee HS
    2. et al.
    (2014) Subnucleosomal Structures and Nucleosome Asymmetry across a Genome
    Publicly available at the NCBI Short Read Archive (accession no: SRA059355).
    1. Raz LD et al.
    (2009) Quantification of the yeast transcriptome by single-molecule sequencing
    Publicly available at the NCBI Short Read Archive (accession no: SRA008810).

Article and author information

Author details

  1. Michael Tramantano

    Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lu Sun

    Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Christy Au

    Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel Labuz

    Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zhimin Liu

    Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mindy Chou

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Chen Shen

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Ed Luk

    Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
    For correspondence
    ed.luk@stonybrook.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6619-2258

Funding

National Institute of General Medical Sciences (RO1 GM104111)

  • Ed Luk

National Institute of General Medical Sciences (T32 GM008468)

  • Michael Tramantano

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Tramantano et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,414
    views
  • 919
    downloads
  • 78
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael Tramantano
  2. Lu Sun
  3. Christy Au
  4. Daniel Labuz
  5. Zhimin Liu
  6. Mindy Chou
  7. Chen Shen
  8. Ed Luk
(2016)
Constitutive turnover of histone H2A.Z at yeast promoters requires the preinitiation complex
eLife 5:e14243.
https://doi.org/10.7554/eLife.14243

Share this article

https://doi.org/10.7554/eLife.14243

Further reading

    1. Biochemistry and Chemical Biology
    Jianheng Fox Liu, Ben R Hawley ... Samie R Jaffrey
    Tools and Resources

    N 6,2’-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5’ isoforms. Thus, gene-level annotations cannot capture the diversity of m6Am modification in the transcriptome. Here, we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5’ isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.