Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation

  1. Ryuta Ishimura
  2. Gabor Nagy
  3. Ivan Dotu
  4. Jeffrey H Chuang
  5. Susan L Ackerman  Is a corresponding author
  1. Howard Hughes Medical Institute, The Jackson Laboratory for Mammalian Genetics, United States
  2. Universitat Pompeu Fabra, Spain
  3. The Jackson Laboratory for Genomic Medicine, United States

Abstract

Ribosome stalling during translation has recently been shown to cause neurodegeneration, yet the signaling pathways triggered by stalled elongation complexes are unknown. To investigate these pathways we analyzed the brain of C57BL/6J-Gtpbp2nmf205-/- mice in which neuronal elongation complexes are stalled at AGA codons due to deficiencies in a tRNAArgUCU tRNA and GTPBP2, a mammalian ribosome rescue factor. Increased levels of phosphorylation of eIF2α (Ser51) were detected prior to neurodegeneration in these mice and transcriptome analysis demonstrated activation of ATF4, a key transcription factor in the integrated stress response (ISR) pathway. Genetic experiments showed that this pathway was activated by the eIF2α kinase, GCN2, in an apparent deacylated tRNA-independent fashion. Further we found that the ISR attenuates neurodegeneration in C57BL/6J-Gtpbp2nmf205-/- mice, underscoring the importance of cellular and stress context on the outcome of activation of this pathway. These results demonstrate the critical interplay between translation elongation and initiation in regulating neuron survival during cellular stress.

Article and author information

Author details

  1. Ryuta Ishimura

    Howard Hughes Medical Institute, The Jackson Laboratory for Mammalian Genetics, Bar Harbor, United States
    Competing interests
    No competing interests declared.
  2. Gabor Nagy

    Howard Hughes Medical Institute, The Jackson Laboratory for Mammalian Genetics, Bar Harbor, United States
    Competing interests
    No competing interests declared.
  3. Ivan Dotu

    Research Programme on Biomedical Informatics, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    No competing interests declared.
  4. Jeffrey H Chuang

    The Jackson Laboratory for Genomic Medicine, Farmington, United States
    Competing interests
    No competing interests declared.
  5. Susan L Ackerman

    Howard Hughes Medical Institute, The Jackson Laboratory for Mammalian Genetics, Bar Harbor, United States
    For correspondence
    sackerman@ucsd.edu
    Competing interests
    Susan L Ackerman, Reviewing editor, eLife.

Reviewing Editor

  1. David Ron, University of Cambridge, United Kingdom

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use protocol (TJL99055) at The Jackson Laboratory.

Version history

  1. Received: January 8, 2016
  2. Accepted: April 14, 2016
  3. Accepted Manuscript published: April 16, 2016 (version 1)
  4. Version of Record published: June 22, 2016 (version 2)

Copyright

© 2016, Ishimura et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,089
    views
  • 1,688
    downloads
  • 142
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ryuta Ishimura
  2. Gabor Nagy
  3. Ivan Dotu
  4. Jeffrey H Chuang
  5. Susan L Ackerman
(2016)
Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation
eLife 5:e14295.
https://doi.org/10.7554/eLife.14295

Share this article

https://doi.org/10.7554/eLife.14295

Further reading

    1. Chromosomes and Gene Expression
    Chaitra Shree Udugere Shivakumara Swamy, Thomas C Boothby
    Insight

    Tiny animals known as tardigrades use a combination of DNA repair machinery and a novel protein to mend their genome after intense ionizing radiation.

    1. Chromosomes and Gene Expression
    Miin S Lin, Se-Young Jo ... Vineet Bafna
    Research Article

    Extrachromosomal DNA is a common cause of oncogene amplification in cancer. The non-chromosomal inheritance of ecDNA enables tumors to rapidly evolve, contributing to treatment resistance and poor outcome for patients. The transcriptional context in which ecDNAs arise and progress, including chromosomally-driven transcription, is incompletely understood. We examined gene expression patterns of 870 tumors of varied histological types, to identify transcriptional correlates of ecDNA. Here, we show that ecDNA-containing tumors impact four major biological processes. Specifically, ecDNA-containing tumors up-regulate DNA damage and repair, cell cycle control, and mitotic processes, but down-regulate global immune regulation pathways. Taken together, these results suggest profound alterations in gene regulation in ecDNA-containing tumors, shedding light on molecular processes that give rise to their development and progression.