1. Chromosomes and Gene Expression
  2. Neuroscience
Download icon

Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation

  1. Ryuta Ishimura
  2. Gabor Nagy
  3. Ivan Dotu
  4. Jeffrey H Chuang
  5. Susan L Ackerman  Is a corresponding author
  1. Howard Hughes Medical Institute, The Jackson Laboratory for Mammalian Genetics, United States
  2. Universitat Pompeu Fabra, Spain
  3. The Jackson Laboratory for Genomic Medicine, United States
Research Article
  • Cited 66
  • Views 5,530
  • Annotations
Cite this article as: eLife 2016;5:e14295 doi: 10.7554/eLife.14295

Abstract

Ribosome stalling during translation has recently been shown to cause neurodegeneration, yet the signaling pathways triggered by stalled elongation complexes are unknown. To investigate these pathways we analyzed the brain of C57BL/6J-Gtpbp2nmf205-/- mice in which neuronal elongation complexes are stalled at AGA codons due to deficiencies in a tRNAArgUCU tRNA and GTPBP2, a mammalian ribosome rescue factor. Increased levels of phosphorylation of eIF2α (Ser51) were detected prior to neurodegeneration in these mice and transcriptome analysis demonstrated activation of ATF4, a key transcription factor in the integrated stress response (ISR) pathway. Genetic experiments showed that this pathway was activated by the eIF2α kinase, GCN2, in an apparent deacylated tRNA-independent fashion. Further we found that the ISR attenuates neurodegeneration in C57BL/6J-Gtpbp2nmf205-/- mice, underscoring the importance of cellular and stress context on the outcome of activation of this pathway. These results demonstrate the critical interplay between translation elongation and initiation in regulating neuron survival during cellular stress.

Article and author information

Author details

  1. Ryuta Ishimura

    Howard Hughes Medical Institute, The Jackson Laboratory for Mammalian Genetics, Bar Harbor, United States
    Competing interests
    No competing interests declared.
  2. Gabor Nagy

    Howard Hughes Medical Institute, The Jackson Laboratory for Mammalian Genetics, Bar Harbor, United States
    Competing interests
    No competing interests declared.
  3. Ivan Dotu

    Research Programme on Biomedical Informatics, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    No competing interests declared.
  4. Jeffrey H Chuang

    The Jackson Laboratory for Genomic Medicine, Farmington, United States
    Competing interests
    No competing interests declared.
  5. Susan L Ackerman

    Howard Hughes Medical Institute, The Jackson Laboratory for Mammalian Genetics, Bar Harbor, United States
    For correspondence
    sackerman@ucsd.edu
    Competing interests
    Susan L Ackerman, Reviewing editor, eLife.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use protocol (TJL99055) at The Jackson Laboratory.

Reviewing Editor

  1. David Ron, University of Cambridge, United Kingdom

Publication history

  1. Received: January 8, 2016
  2. Accepted: April 14, 2016
  3. Accepted Manuscript published: April 16, 2016 (version 1)
  4. Version of Record published: June 22, 2016 (version 2)

Copyright

© 2016, Ishimura et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,530
    Page views
  • 1,490
    Downloads
  • 66
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    Alessandro Stirpe et al.
    Research Article

    The SUV39 class of methyltransferase enzymes deposits histone H3 lysine 9 di- and trimethylation (H3K9me2/3), the hallmark of constitutive heterochromatin. How these enzymes are regulated to mark specific genomic regions as heterochromatic is poorly understood. Clr4 is the sole H3K9me2/3 methyltransferase in the fission yeast Schizosaccharomyces pombe, and recent evidence suggests that ubiquitination of lysine 14 on histone H3 (H3K14ub) plays a key role in H3K9 methylation. However, the molecular mechanism of this regulation and its role in heterochromatin formation remain to be determined. Our structure-function approach shows that the H3K14ub substrate binds specifically and tightly to the catalytic domain of Clr4, and thereby stimulates the enzyme by over 250-fold. Mutations that disrupt this mechanism lead to a loss of H3K9me2/3 and abolish heterochromatin silencing similar to clr4 deletion. Comparison with mammalian SET domain proteins suggests that the Clr4 SET domain harbors a conserved sensor for H3K14ub, which mediates licensing of heterochromatin formation.

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    Michele Felletti et al.
    Research Article

    The ability to regulate DNA replication initiation in response to changing nutrient conditions is an important feature of most cell types. In bacteria, DNA replication is triggered by the initiator protein DnaA, which has long been suggested to respond to nutritional changes; nevertheless, the underlying mechanisms remain poorly understood. Here, we report a novel mechanism that adjusts DnaA synthesis in response to nutrient availability in Caulobacter crescentus. By performing a detailed biochemical and genetic analysis of the dnaA mRNA, we identified a sequence downstream of the dnaA start codon that inhibits DnaA translation elongation upon carbon exhaustion. Our data show that the corresponding peptide sequence, but not the mRNA secondary structure or the codon choice, is critical for this response, suggesting that specific amino acids in the growing DnaA nascent chain tune translational efficiency. Our study provides new insights into DnaA regulation and highlights the importance of translation elongation as a regulatory target. We propose that translation regulation by nascent chain sequences, like the one described, might constitute a general strategy for modulating the synthesis rate of specific proteins under changing conditions.