The functional O-mannose glycan on α-dystroglycan contains a phospho-ribitol primed for matriglycan addition

  1. Jeremy L Praissman
  2. Tobias Willer
  3. M Osman Sheikh
  4. Ants Toi
  5. David Chitayat
  6. Yung-Yao Lin
  7. Hane Lee
  8. Stephanie H Stalnaker
  9. Shuo Wang
  10. Pradeep Kumar Prabhakar
  11. Stanley F Nelson
  12. Derek L Stemple
  13. Steven A Moore
  14. Kelley W Moremen
  15. Kevin P Campbell
  16. Lance Wells  Is a corresponding author
  1. University of Georgia, United States
  2. University of Iowa, United States
  3. Mount Sinai Hospital, Canada
  4. University of Toronto, Canada
  5. Blizard Institute, United Kingdom
  6. University of California, Los Angeles, United States
  7. Wellcome Trust Sanger Institute, United Kingdom

Abstract

Multiple glycosyltransferases are essential for the proper modification of alpha-dystroglycan, as mutations in the encoding genes cause congenital/limb-girdle muscular dystrophies. Here we elucidate further the structure of an O-mannose-initiated glycan on alpha-dystroglycan that is required to generate its extracellular matrix-binding polysaccharide. This functional glycan contains a novel ribitol structure that links a phosphotrisaccharide to xylose. ISPD is a CDP-ribitol (ribose) pyrophosphorylase that generates the reduced sugar nucleotide for the insertion of ribitol in a phosphodiester linkage to the glycoprotein. TMEM5 is a UDP-xylosyl transferase that elaborates the structure. We demonstrate in a zebrafish model as well as in a human patient that defects in TMEM5 result in muscular dystrophy in combination with abnormal brain development. Thus, we propose a novel structure - a ribitol in a phosphodiester linkage - for the moiety on which TMEM5, B4GAT1, and LARGE act to generate the functional receptor for ECM proteins having LG domains.

Article and author information

Author details

  1. Jeremy L Praissman

    Complex Carbohydrate Research Center, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Tobias Willer

    Department of Molecular Physiology and Biophysics, Neurology, and Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. M Osman Sheikh

    Complex Carbohydrate Research Center, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ants Toi

    Department of Medical Imaging, Mount Sinai Hospital, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. David Chitayat

    Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Yung-Yao Lin

    Blizard Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Hane Lee

    Department of Human Genetics, Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Stephanie H Stalnaker

    Complex Carbohydrate Research Center, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Shuo Wang

    Complex Carbohydrate Research Center, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Pradeep Kumar Prabhakar

    Complex Carbohydrate Research Center, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Stanley F Nelson

    Department of Human Genetics, Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Derek L Stemple

    Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Steven A Moore

    Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Kelley W Moremen

    Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Kevin P Campbell

    Department of Molecular Physiology and Biophysics, Neurology, and Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Lance Wells

    Complex Carbohydrate Research Center, University of Georgia, Athens, United States
    For correspondence
    lwells@ccrc.uga.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: Informed consent and ethical approval is detailed in the Materials and Methods section. All tissues and patient cells were obtained and tested according to the guidelines set out by the Human Subjects Institutional Review Board of the University of Iowa; informed consent was obtained from all subjects or their legal guardians.

Copyright

© 2016, Praissman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,572
    views
  • 827
    downloads
  • 99
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeremy L Praissman
  2. Tobias Willer
  3. M Osman Sheikh
  4. Ants Toi
  5. David Chitayat
  6. Yung-Yao Lin
  7. Hane Lee
  8. Stephanie H Stalnaker
  9. Shuo Wang
  10. Pradeep Kumar Prabhakar
  11. Stanley F Nelson
  12. Derek L Stemple
  13. Steven A Moore
  14. Kelley W Moremen
  15. Kevin P Campbell
  16. Lance Wells
(2016)
The functional O-mannose glycan on α-dystroglycan contains a phospho-ribitol primed for matriglycan addition
eLife 5:e14473.
https://doi.org/10.7554/eLife.14473

Share this article

https://doi.org/10.7554/eLife.14473

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Stephanie M Stuteley, Ghader Bashiri
    Insight

    In the bacterium M. smegmatis, an enzyme called MftG allows the cofactor mycofactocin to transfer electrons released during ethanol metabolism to the electron transport chain.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yi-Hsuan Lin, Tae Hun Kim ... Hue Sun Chan
    Research Article

    Liquid-liquid phase separation (LLPS) involving intrinsically disordered protein regions (IDRs) is a major physical mechanism for biological membraneless compartmentalization. The multifaceted electrostatic effects in these biomolecular condensates are exemplified here by experimental and theoretical investigations of the different salt- and ATP-dependent LLPSs of an IDR of messenger RNA-regulating protein Caprin1 and its phosphorylated variant pY-Caprin1, exhibiting, for example, reentrant behaviors in some instances but not others. Experimental data are rationalized by physical modeling using analytical theory, molecular dynamics, and polymer field-theoretic simulations, indicating that interchain ion bridges enhance LLPS of polyelectrolytes such as Caprin1 and the high valency of ATP-magnesium is a significant factor for its colocalization with the condensed phases, as similar trends are observed for other IDRs. The electrostatic nature of these features complements ATP’s involvement in π-related interactions and as an amphiphilic hydrotrope, underscoring a general role of biomolecular condensates in modulating ion concentrations and its functional ramifications.