The functional O-mannose glycan on α-dystroglycan contains a phospho-ribitol primed for matriglycan addition

  1. Jeremy L Praissman
  2. Tobias Willer
  3. M Osman Sheikh
  4. Ants Toi
  5. David Chitayat
  6. Yung-Yao Lin
  7. Hane Lee
  8. Stephanie H Stalnaker
  9. Shuo Wang
  10. Pradeep Kumar Prabhakar
  11. Stanley F Nelson
  12. Derek L Stemple
  13. Steven A Moore
  14. Kelley W Moremen
  15. Kevin P Campbell
  16. Lance Wells  Is a corresponding author
  1. University of Georgia, United States
  2. University of Iowa, United States
  3. Mount Sinai Hospital, Canada
  4. University of Toronto, Canada
  5. Blizard Institute, United Kingdom
  6. University of California, Los Angeles, United States
  7. Wellcome Trust Sanger Institute, United Kingdom

Abstract

Multiple glycosyltransferases are essential for the proper modification of alpha-dystroglycan, as mutations in the encoding genes cause congenital/limb-girdle muscular dystrophies. Here we elucidate further the structure of an O-mannose-initiated glycan on alpha-dystroglycan that is required to generate its extracellular matrix-binding polysaccharide. This functional glycan contains a novel ribitol structure that links a phosphotrisaccharide to xylose. ISPD is a CDP-ribitol (ribose) pyrophosphorylase that generates the reduced sugar nucleotide for the insertion of ribitol in a phosphodiester linkage to the glycoprotein. TMEM5 is a UDP-xylosyl transferase that elaborates the structure. We demonstrate in a zebrafish model as well as in a human patient that defects in TMEM5 result in muscular dystrophy in combination with abnormal brain development. Thus, we propose a novel structure - a ribitol in a phosphodiester linkage - for the moiety on which TMEM5, B4GAT1, and LARGE act to generate the functional receptor for ECM proteins having LG domains.

Article and author information

Author details

  1. Jeremy L Praissman

    Complex Carbohydrate Research Center, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Tobias Willer

    Department of Molecular Physiology and Biophysics, Neurology, and Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. M Osman Sheikh

    Complex Carbohydrate Research Center, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ants Toi

    Department of Medical Imaging, Mount Sinai Hospital, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. David Chitayat

    Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Yung-Yao Lin

    Blizard Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Hane Lee

    Department of Human Genetics, Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Stephanie H Stalnaker

    Complex Carbohydrate Research Center, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Shuo Wang

    Complex Carbohydrate Research Center, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Pradeep Kumar Prabhakar

    Complex Carbohydrate Research Center, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Stanley F Nelson

    Department of Human Genetics, Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Derek L Stemple

    Wellcome Trust Genome Campus, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Steven A Moore

    Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Kelley W Moremen

    Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Kevin P Campbell

    Department of Molecular Physiology and Biophysics, Neurology, and Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Lance Wells

    Complex Carbohydrate Research Center, University of Georgia, Athens, United States
    For correspondence
    lwells@ccrc.uga.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Human subjects: Informed consent and ethical approval is detailed in the Materials and Methods section. All tissues and patient cells were obtained and tested according to the guidelines set out by the Human Subjects Institutional Review Board of the University of Iowa; informed consent was obtained from all subjects or their legal guardians.

Copyright

© 2016, Praissman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,496
    views
  • 826
    downloads
  • 99
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeremy L Praissman
  2. Tobias Willer
  3. M Osman Sheikh
  4. Ants Toi
  5. David Chitayat
  6. Yung-Yao Lin
  7. Hane Lee
  8. Stephanie H Stalnaker
  9. Shuo Wang
  10. Pradeep Kumar Prabhakar
  11. Stanley F Nelson
  12. Derek L Stemple
  13. Steven A Moore
  14. Kelley W Moremen
  15. Kevin P Campbell
  16. Lance Wells
(2016)
The functional O-mannose glycan on α-dystroglycan contains a phospho-ribitol primed for matriglycan addition
eLife 5:e14473.
https://doi.org/10.7554/eLife.14473

Share this article

https://doi.org/10.7554/eLife.14473

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.