Bottom-up and top-down influences at untrained conditions determine perceptual learning specificity and transfer

  1. Ying-Zi Xiong
  2. Jun-Yun Zhang
  3. Cong Yu  Is a corresponding author
  1. Peking University, China

Abstract

Perceptual learning is often orientation and location specific, which may indicate neuronal plasticity in early visual areas. However, learning specificity diminishes with additional exposure of the transfer orientation or location via irrelevant tasks, suggesting that the specificity is related to untrained conditions, likely because neurons representing untrained conditions are neither bottom-up stimulated nor top-down attended during training. To demonstrate these top-down and bottom-up contributions, we applied a 'continuous flash suppression' technique to suppress the exposure stimulus into sub-consciousness, and with additional manipulations to achieve pure bottom-up stimulation or top-down attention with the transfer condition. We found that either bottom-up or top-down influences enabled significant transfer of orientation and Vernier discrimination learning. These results suggest that learning specificity may result from under-activations of untrained visual neurons due to insufficient bottom-up stimulation and/or top-down attention during training. High-level perceptual learning thus may not functionally connect to these neurons for learning transfer.

Article and author information

Author details

  1. Ying-Zi Xiong

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Jun-Yun Zhang

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Cong Yu

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    For correspondence
    yucong@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8453-6974

Reviewing Editor

  1. Joshua I Gold, University of Pennsylvania, United States

Ethics

Human subjects: Informed consent, and consent to publish was obtained from each observer before testing. This study was approved by the Peking University Institution Review Board.

Version history

  1. Received: February 18, 2016
  2. Accepted: July 4, 2016
  3. Accepted Manuscript published: July 5, 2016 (version 1)
  4. Version of Record published: July 28, 2016 (version 2)
  5. Version of Record updated: August 18, 2016 (version 3)

Copyright

© 2016, Xiong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,916
    views
  • 337
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ying-Zi Xiong
  2. Jun-Yun Zhang
  3. Cong Yu
(2016)
Bottom-up and top-down influences at untrained conditions determine perceptual learning specificity and transfer
eLife 5:e14614.
https://doi.org/10.7554/eLife.14614

Share this article

https://doi.org/10.7554/eLife.14614

Further reading

    1. Neuroscience
    Juan Jose Rodriguez Gotor, Kashif Mahfooz ... John F Wesseling
    Research Article

    Vesicles within presynaptic terminals are thought to be segregated into a variety of readily releasable and reserve pools. The nature of the pools and trafficking between them is not well understood, but pools that are slow to mobilize when synapses are active are often assumed to feed pools that are mobilized more quickly, in a series. However, electrophysiological studies of synaptic transmission have suggested instead a parallel organization where vesicles within slowly and quickly mobilized reserve pools would separately feed independent reluctant- and fast-releasing subdivisions of the readily releasable pool. Here, we use FM-dyes to confirm the existence of multiple reserve pools at hippocampal synapses and a parallel organization that prevents intermixing between the pools, even when stimulation is intense enough to drive exocytosis at the maximum rate. The experiments additionally demonstrate extensive heterogeneity among synapses in the relative sizes of the slowly and quickly mobilized reserve pools, which suggests equivalent heterogeneity in the numbers of reluctant and fast-releasing readily releasable vesicles that may be relevant for understanding information processing and storage.