Bottom-up and top-down influences at untrained conditions determine perceptual learning specificity and transfer

  1. Ying-Zi Xiong
  2. Jun-Yun Zhang
  3. Cong Yu  Is a corresponding author
  1. Peking University, China

Abstract

Perceptual learning is often orientation and location specific, which may indicate neuronal plasticity in early visual areas. However, learning specificity diminishes with additional exposure of the transfer orientation or location via irrelevant tasks, suggesting that the specificity is related to untrained conditions, likely because neurons representing untrained conditions are neither bottom-up stimulated nor top-down attended during training. To demonstrate these top-down and bottom-up contributions, we applied a 'continuous flash suppression' technique to suppress the exposure stimulus into sub-consciousness, and with additional manipulations to achieve pure bottom-up stimulation or top-down attention with the transfer condition. We found that either bottom-up or top-down influences enabled significant transfer of orientation and Vernier discrimination learning. These results suggest that learning specificity may result from under-activations of untrained visual neurons due to insufficient bottom-up stimulation and/or top-down attention during training. High-level perceptual learning thus may not functionally connect to these neurons for learning transfer.

Article and author information

Author details

  1. Ying-Zi Xiong

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Jun-Yun Zhang

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Cong Yu

    School of Psychological and Cognitive Sciences, Peking University, Beijing, China
    For correspondence
    yucong@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8453-6974

Ethics

Human subjects: Informed consent, and consent to publish was obtained from each observer before testing. This study was approved by the Peking University Institution Review Board.

Copyright

© 2016, Xiong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ying-Zi Xiong
  2. Jun-Yun Zhang
  3. Cong Yu
(2016)
Bottom-up and top-down influences at untrained conditions determine perceptual learning specificity and transfer
eLife 5:e14614.
https://doi.org/10.7554/eLife.14614

Share this article

https://doi.org/10.7554/eLife.14614

Further reading

    1. Neuroscience
    Proloy Das, Mingjian He, Patrick L Purdon
    Tools and Resources

    Modern neurophysiological recordings are performed using multichannel sensor arrays that are able to record activity in an increasingly high number of channels numbering in the 100s to 1000s. Often, underlying lower-dimensional patterns of activity are responsible for the observed dynamics, but these representations are difficult to reliably identify using existing methods that attempt to summarize multivariate relationships in a post hoc manner from univariate analyses or using current blind source separation methods. While such methods can reveal appealing patterns of activity, determining the number of components to include, assessing their statistical significance, and interpreting them requires extensive manual intervention and subjective judgment in practice. These difficulties with component selection and interpretation occur in large part because these methods lack a generative model for the underlying spatio-temporal dynamics. Here, we describe a novel component analysis method anchored by a generative model where each source is described by a bio-physically inspired state-space representation. The parameters governing this representation readily capture the oscillatory temporal dynamics of the components, so we refer to it as oscillation component analysis. These parameters – the oscillatory properties, the component mixing weights at the sensors, and the number of oscillations – all are inferred in a data-driven fashion within a Bayesian framework employing an instance of the expectation maximization algorithm. We analyze high-dimensional electroencephalography and magnetoencephalography recordings from human studies to illustrate the potential utility of this method for neuroscience data.