Distinct modes of endocytotic presynaptic membrane and protein uptake at the calyx of Held terminal of rats and mice

  1. Yuji Okamoto
  2. Noa Lipstein
  3. Yunfeng Hua
  4. Kun-Han Lin
  5. Nils Brose
  6. Takeshi Sakaba
  7. Mitsuharu Midorikawa  Is a corresponding author
  1. Doshisha University, Japan
  2. Max Planck Institute of Experimental Medicine, Germany
  3. Max Planck Institute of Brain Research, Germany
  4. Max-Planck-Institute for Biophysical Chemistry, Germany

Abstract

Neurotransmitter is released at synapses by fusion of synaptic vesicles with the plasma membrane. To sustain synaptic transmission, compensatory retrieval of membranes and vesicular proteins is essential. We combined capacitance measurements and pH-imaging via pH-sensitive vesicular protein marker (anti-synaptotagmin2-cypHer5E), and compared the retrieval kinetics of membranes and vesicular proteins at the calyx of Held synapse. Membrane and Syt2 were retrieved with a similar time course when slow endocytosis was elicited. When fast endocytosis was elicited, Syt2 was still retrieved together with the membrane, but endocytosed organelle re-acidification was slowed down, which provides strong evidence for two distinct endocytotic pathways. Strikingly, CaM inhibitors or the inhibition of the Ca2+-calmodulin-Munc13-1 signaling pathway only impaired the uptake of Syt2 while leaving membrane retrieval intact, indicating different recycling mechanisms for membranes and vesicle proteins. Our data identify a novel mechanism of stimulus- and Ca2+-dependent regulation of coordinated endocytosis of synaptic membranes and vesicle proteins.

Article and author information

Author details

  1. Yuji Okamoto

    Graduate School of Brain Science, Doshisha University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Noa Lipstein

    Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Yunfeng Hua

    Department of Connectomics, Max Planck Institute of Brain Research, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Kun-Han Lin

    Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Nils Brose

    Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Takeshi Sakaba

    Graduate School of Brain Science, Doshisha University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Mitsuharu Midorikawa

    Graduate School of Brain Science, Doshisha University, Kyoto, Japan
    For correspondence
    mmidorik@mail.doshisha.ac.jp
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Animal care and animal procedures were conducted in accordance with the guidelines of the Physiological Society of Japan, and were approved by the Doshisha University Committee for Regulation on the Conduct of Animal Experiments and Related Activities. All efforts were taken to minimize animal numbers. The generation, maintenance, and use of the Munc13-1W464R mice were approved by the responsible local government organization (Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit, permissions 33.9.42502-04-13/1359 and 33.19-42502-04-15/1817).

Copyright

© 2016, Okamoto et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,089
    views
  • 620
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yuji Okamoto
  2. Noa Lipstein
  3. Yunfeng Hua
  4. Kun-Han Lin
  5. Nils Brose
  6. Takeshi Sakaba
  7. Mitsuharu Midorikawa
(2016)
Distinct modes of endocytotic presynaptic membrane and protein uptake at the calyx of Held terminal of rats and mice
eLife 5:e14643.
https://doi.org/10.7554/eLife.14643

Share this article

https://doi.org/10.7554/eLife.14643

Further reading

    1. Neuroscience
    Jessica Royer, Valeria Kebets ... Boris C Bernhardt
    Research Article Updated

    Complex structural and functional changes occurring in typical and atypical development necessitate multidimensional approaches to better understand the risk of developing psychopathology. Here, we simultaneously examined structural and functional brain network patterns in relation to dimensions of psychopathology in the Adolescent Brain Cognitive Development (ABCD) dataset. Several components were identified, recapitulating the psychopathology hierarchy, with the general psychopathology (p) factor explaining most covariance with multimodal imaging features, while the internalizing, externalizing, and neurodevelopmental dimensions were each associated with distinct morphological and functional connectivity signatures. Connectivity signatures associated with the p factor and neurodevelopmental dimensions followed the sensory-to-transmodal axis of cortical organization, which is related to the emergence of complex cognition and risk for psychopathology. Results were consistent in two separate data subsamples and robust to variations in analytical parameters. Although model parameters yielded statistically significant brain–behavior associations in unseen data, generalizability of the model was rather limited for all three latent components (r change from within- to out-of-sample statistics: LC1within = 0.36, LC1out = 0.03; LC2within = 0.34, LC2out = 0.05; LC3within = 0.35, LC3out = 0.07). Our findings help in better understanding biological mechanisms underpinning dimensions of psychopathology, and could provide brain-based vulnerability markers.

    1. Neuroscience
    Hans C Leier, Alexander J Foden ... Heather T Broihier
    Research Article

    Sensory experience during developmental critical periods has lifelong consequences for circuit function and behavior, but the molecular and cellular mechanisms through which experience causes these changes are not well understood. The Drosophila antennal lobe houses synapses between olfactory sensory neurons (OSNs) and downstream projection neurons (PNs) in stereotyped glomeruli. Many glomeruli exhibit structural plasticity in response to early-life odor exposure, indicating a general sensitivity of the fly olfactory circuitry to early sensory experience. We recently found that glia shape antennal lobe development in young adults, leading us to ask if glia also drive experience-dependent plasticity during this period. Here, we define a critical period for structural and functional plasticity of OSN-PN synapses in the ethyl butyrate (EB)-sensitive glomerulus VM7. EB exposure for the first 2 days post-eclosion drives large-scale reductions in glomerular volume, presynapse number, and post- synaptic activity. Crucially, pruning during the critical period has long-term consequences for circuit function since both OSN-PN synapse number and spontaneous activity of PNs remain persistently decreased following early-life odor exposure. The highly conserved engulfment receptor Draper is required for this critical period plasticity as ensheathing glia upregulate Draper, invade the VM7 glomerulus, and phagocytose OSN presynaptic terminals in response to critical-period EB exposure. Loss of Draper fully suppresses the morphological and physiological consequences of critical period odor exposure, arguing that phagocytic glia engulf intact synaptic terminals. These data demonstrate experience-dependent pruning of synapses and argue that Drosophila olfactory circuitry is a powerful model for defining the function of glia in critical period plasticity.