Small-molecule inhibitors identify the RAD52-ssDNA interaction as critical for recovery from replication stress and for survival of BRCA2 deficient cells

Abstract

The DNA repair protein RAD52 is an emerging therapeutic target of high importance for BRCA-deficient tumors. Depletion of RAD52 is synthetically lethal with defects in tumor suppressors BRCA1, BRCA2 and PALB2. RAD52 also participates in recovery of the stalled replication forks. Anticipating that ssDNA binding activity underlies the RAD52 cellular functions, we carried out a high throughput screening campaign to identify compounds that disrupt the RAD52-ssDNA interaction. Lead compounds were confirmed as RAD52 inhibitors in biochemical assays. Computational analysis predicted that these inhibitors bind within the ssDNA-binding groove of the RAD52 oligomeric ring. The nature of the inhibtor-RAD52 complex was validated through an in silico screening campaign, culminating in the discovery of an additional RAD52 inhibitor. Cellular studies with our inhibitors showed that the RAD52-ssDNA interaction enables its function at stalled replication forks, and that the inhibition of RAD52-ssDNA binding acts additively with BRCA2 or MUS81 depletion in cell killing.

Article and author information

Author details

  1. Sarah R Hengel

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Eva Malacaria

    Department of Environment and Health, Istituto Superiore di Sanita, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Laura Folly da Silva Constantino

    Department of Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Fletcher E Bain

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Andrea Diaz

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Brandon G Koch

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Liping Yu

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Meng Wu

    Department of Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Pietro Pichierri

    Department of Environment and Health, Istituto Superiore di Sanita, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Michael Ashley Spies

    Department of Biochemistry, University of Iowa, Iowa City, United States
    For correspondence
    m-ashley-spies@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.
  11. Maria Spies

    Department of Biochemistry, University of Iowa, Iowa City, United States
    For correspondence
    maria.g.spies@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7375-8037

Funding

American Cancer Society (RSG-09-182-01-DMC)

  • Maria Spies

National Institutes of Health (NIH R01-GM097373)

  • Michael Ashley Spies

National Institutes of Health (1S10RR029274-01)

  • Meng Wu

Itallian Association of Cancer Research (AIRC, IG13398)

  • Pietro Pichierri

Nando-Peretti Foundation (2012-113)

  • Pietro Pichierri

CAPES

  • Laura Folly da Silva Constantino

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Hengel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,191
    views
  • 1,024
    downloads
  • 65
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sarah R Hengel
  2. Eva Malacaria
  3. Laura Folly da Silva Constantino
  4. Fletcher E Bain
  5. Andrea Diaz
  6. Brandon G Koch
  7. Liping Yu
  8. Meng Wu
  9. Pietro Pichierri
  10. Michael Ashley Spies
  11. Maria Spies
(2016)
Small-molecule inhibitors identify the RAD52-ssDNA interaction as critical for recovery from replication stress and for survival of BRCA2 deficient cells
eLife 5:e14740.
https://doi.org/10.7554/eLife.14740

Share this article

https://doi.org/10.7554/eLife.14740

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.