Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy

  1. Natalie M Clark
  2. Elizabeth Hinde
  3. Cara M Winter
  4. Adam P Fisher
  5. Giuseppe Crosti
  6. Ikram Blilou
  7. Enrico Gratton
  8. Philip N Benfey  Is a corresponding author
  9. Rosangela Sozzani
  1. North Carolina State University, United States
  2. University of California, Irvine, United States
  3. Howard Hughes Medical Institute, Duke University, United States
  4. Wageningen University, Netherlands

Abstract

To understand complex regulatory processes in multicellular organisms, it is critical to be able to quantitatively analyze protein movement and protein-protein interactions in time and space. During Arabidopsis development, the intercellular movement of SHORTROOT (SHR) and subsequent interaction with its downstream target SCARECROW (SCR) control root patterning and cell fate specification. However, quantitative information about the spatio-temporal dynamics of SHR movement and SHR-SCR interaction is currently unavailable. Here, we quantify parameters including SHR mobility, oligomeric state, and association with SCR using a combination of Fluorescent Correlation Spectroscopy (FCS) techniques. We then incorporate these parameters into a mathematical model of SHR and SCR, which shows that SHR reaches a steady state in minutes, while SCR and the SHR-SCR complex reach a steady-state between 18 and 24 hours. Our model reveals the timing of SHR and SCR dynamics and allows us to understand how protein movement and protein-protein stoichiometry contribute to development.

Article and author information

Author details

  1. Natalie M Clark

    Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Elizabeth Hinde

    Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Cara M Winter

    Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Adam P Fisher

    Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Giuseppe Crosti

    Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ikram Blilou

    Plant Developmental Biology, Wageningen University, Wageningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Enrico Gratton

    Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Philip N Benfey

    Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, United States
    For correspondence
    philip.benfey@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
  9. Rosangela Sozzani

    Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Clark et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 75
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Natalie M Clark
  2. Elizabeth Hinde
  3. Cara M Winter
  4. Adam P Fisher
  5. Giuseppe Crosti
  6. Ikram Blilou
  7. Enrico Gratton
  8. Philip N Benfey
  9. Rosangela Sozzani
(2016)
Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy
eLife 5:e14770.
https://doi.org/10.7554/eLife.14770

Share this article

https://doi.org/10.7554/eLife.14770

Further reading

    1. Cell Biology
    2. Developmental Biology
    Jeet H Patel, Mary C Mullins
    Insight

    Disease-causing mutations in the signaling protein BMP4 impair its secretion, but only when it is made as a homodimer.

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article Updated

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here, we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin 1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration, and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.