Golgi self-correction generates bioequivalent glycans to preserve cellular homeostasis

  1. Haik Mkhikian
  2. Christie-Lynn Mortales
  3. Raymond Zhou
  4. Khachik Khachikyan
  5. Gang Wu
  6. Stuart M Haslam
  7. Patil Kavarian
  8. Anne Dell
  9. Michael Demetriou  Is a corresponding author
  1. University of California, Irvine, United States
  2. Imperial College London, United Kingdom
1 additional file

Additional files

All additional files

Any figure supplements, source code, source data, videos or supplementary files associated with this article are contained within this zip.

https://cdn.elifesciences.org/articles/14814/elife-14814-supp-v1.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haik Mkhikian
  2. Christie-Lynn Mortales
  3. Raymond Zhou
  4. Khachik Khachikyan
  5. Gang Wu
  6. Stuart M Haslam
  7. Patil Kavarian
  8. Anne Dell
  9. Michael Demetriou
(2016)
Golgi self-correction generates bioequivalent glycans to preserve cellular homeostasis
eLife 5:e14814.
https://doi.org/10.7554/eLife.14814