Golgi self-correction generates bioequivalent glycans to preserve cellular homeostasis

  1. Haik Mkhikian
  2. Christie-Lynn Mortales
  3. Raymond Zhou
  4. Khachik Khachikyan
  5. Gang Wu
  6. Stuart M Haslam
  7. Patil Kavarian
  8. Anne Dell
  9. Michael Demetriou  Is a corresponding author
  1. University of California, Irvine, United States
  2. Imperial College London, United Kingdom

Abstract

Essential biological systems employ self-correcting mechanisms to maintain cellular homeostasis. Mammalian cell function is dynamically regulated by the interaction of cell surface galectins with branched N-glycans. Here we report that N-glycan branching deficiency triggers the Golgi to generate bioequivalent N-glycans that preserve galectin-glycoprotein interactions and cellular homeostasis. Galectins bind N-acetyllactosamine (LacNAc) units within N-glycans initiated from UDP-GlcNAc by the medial-Golgi branching enzymes as well as the trans-Golgi poly-LacNAc extension enzyme β1,3-N-acetylglucosaminyltransferase (B3GNT). Marginally reducing LacNAc content by limiting N-glycans to three branches results in T-cell hyperactivity and autoimmunity; yet further restricting branching does not produce a more hyperactive state. Rather, new poly-LacNAc extension by B3GNT maintains galectin binding and immune homeostasis. Poly-LacNAc extension is triggered by redistribution of unused UDP-GlcNAc from the medial to trans-Golgi via inter-cisternal tubules. These data demonstrate the functional equivalency of structurally dissimilar N-glycans and suggest a self-correcting feature of the Golgi that sustains cellular homeostasis.

Article and author information

Author details

  1. Haik Mkhikian

    Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Christie-Lynn Mortales

    Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Raymond Zhou

    Department of Neurology and Institute for Immunology, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Khachik Khachikyan

    Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Gang Wu

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Stuart M Haslam

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Patil Kavarian

    Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Anne Dell

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael Demetriou

    Department of Neurology and Institute for Immunology, University of California, Irvine, Irvine, United States
    For correspondence
    mdemetri@uci.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#2001-2305) of the University of California, Irvine.

Human subjects: Informed consent was obtained from human subjects to obtain peripheral blood for isolation of T cells and that resulting publications and/or presentations will not contain identifiable information. This was approved by the University of California Irvine Institutional Review board (HS#2001-2075).

Copyright

© 2016, Mkhikian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,524
    views
  • 643
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haik Mkhikian
  2. Christie-Lynn Mortales
  3. Raymond Zhou
  4. Khachik Khachikyan
  5. Gang Wu
  6. Stuart M Haslam
  7. Patil Kavarian
  8. Anne Dell
  9. Michael Demetriou
(2016)
Golgi self-correction generates bioequivalent glycans to preserve cellular homeostasis
eLife 5:e14814.
https://doi.org/10.7554/eLife.14814

Share this article

https://doi.org/10.7554/eLife.14814

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.