Architecture and RNA binding of the human negative elongation factor

  1. Seychelle M Vos
  2. David Pöllmann
  3. Livia Caizzi
  4. Katharina B Hofmann
  5. Pascaline Rombaut
  6. Tomasz Zimniak
  7. Franz Herzog
  8. Patrick Cramer  Is a corresponding author
  1. Max Planck Institute for Biophysical Chemistry, Germany
  2. Ludwig-Maximilians-Universität München, Germany

Abstract

Transcription regulation in metazoans often involves promoter-proximal pausing of RNA polymerase (Pol) II, which requires the 4-subunit negative elongation factor (NELF). Here we discern the functional architecture of human NELF through X-ray crystallography, protein crosslinking, biochemical assays, and RNA crosslinking in cells. We identify a NELF core subcomplex formed by conserved regions in subunits NELF-A and NELF-C, and resolve its crystal structure. The NELF-AC subcomplex binds single-stranded nucleic acids in vitro, and NELF-C associates with RNA in vivo. A positively charged face of NELF-AC is involved in RNA binding, whereas the opposite face of the NELF-AC subcomplex binds NELF-B. NELF-B is predicted to form a HEAT repeat fold, also binds RNA in vivo, and anchors the subunit NELF-E, which is confirmed to bind RNA in vivo. These results reveal the three-dimensional architecture and three RNA-binding faces of NELF.

Article and author information

Author details

  1. Seychelle M Vos

    Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. David Pöllmann

    Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Livia Caizzi

    Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Katharina B Hofmann

    Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Pascaline Rombaut

    Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Tomasz Zimniak

    Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Franz Herzog

    Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Patrick Cramer

    Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    For correspondence
    patrick.cramer@mpibpc.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Vos et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,737
    views
  • 970
    downloads
  • 66
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Seychelle M Vos
  2. David Pöllmann
  3. Livia Caizzi
  4. Katharina B Hofmann
  5. Pascaline Rombaut
  6. Tomasz Zimniak
  7. Franz Herzog
  8. Patrick Cramer
(2016)
Architecture and RNA binding of the human negative elongation factor
eLife 5:e14981.
https://doi.org/10.7554/eLife.14981

Share this article

https://doi.org/10.7554/eLife.14981

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.