Architecture and RNA binding of the human negative elongation factor

  1. Seychelle M Vos
  2. David Pöllmann
  3. Livia Caizzi
  4. Katharina B Hofmann
  5. Pascaline Rombaut
  6. Tomasz Zimniak
  7. Franz Herzog
  8. Patrick Cramer  Is a corresponding author
  1. Max Planck Institute for Biophysical Chemistry, Germany
  2. Ludwig-Maximilians-Universität München, Germany

Abstract

Transcription regulation in metazoans often involves promoter-proximal pausing of RNA polymerase (Pol) II, which requires the 4-subunit negative elongation factor (NELF). Here we discern the functional architecture of human NELF through X-ray crystallography, protein crosslinking, biochemical assays, and RNA crosslinking in cells. We identify a NELF core subcomplex formed by conserved regions in subunits NELF-A and NELF-C, and resolve its crystal structure. The NELF-AC subcomplex binds single-stranded nucleic acids in vitro, and NELF-C associates with RNA in vivo. A positively charged face of NELF-AC is involved in RNA binding, whereas the opposite face of the NELF-AC subcomplex binds NELF-B. NELF-B is predicted to form a HEAT repeat fold, also binds RNA in vivo, and anchors the subunit NELF-E, which is confirmed to bind RNA in vivo. These results reveal the three-dimensional architecture and three RNA-binding faces of NELF.

Article and author information

Author details

  1. Seychelle M Vos

    Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. David Pöllmann

    Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Livia Caizzi

    Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Katharina B Hofmann

    Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Pascaline Rombaut

    Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Tomasz Zimniak

    Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Franz Herzog

    Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Patrick Cramer

    Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    For correspondence
    patrick.cramer@mpibpc.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Karen Adelman, National Institute of Environmental Health Sciences, United States

Publication history

  1. Received: February 3, 2016
  2. Accepted: June 9, 2016
  3. Accepted Manuscript published: June 10, 2016 (version 1)
  4. Version of Record published: July 11, 2016 (version 2)

Copyright

© 2016, Vos et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,231
    Page views
  • 937
    Downloads
  • 41
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Seychelle M Vos
  2. David Pöllmann
  3. Livia Caizzi
  4. Katharina B Hofmann
  5. Pascaline Rombaut
  6. Tomasz Zimniak
  7. Franz Herzog
  8. Patrick Cramer
(2016)
Architecture and RNA binding of the human negative elongation factor
eLife 5:e14981.
https://doi.org/10.7554/eLife.14981

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Maura Greiser, Mariusz Karbowski ... Liron Boyman
    Research Article

    Mitochondrial ATP production in cardiac ventricular myocytes must be continually adjusted to rapidly replenish the ATP consumed by the working heart. Two systems are known to be critical in this regulation: mitochondrial matrix Ca2+ ([Ca2+]m) and blood flow that is tuned by local ventricular myocyte metabolic signaling. However, these two regulatory systems do not fully account for the physiological range of ATP consumption observed. We report here on the identity, location, and signaling cascade of a third regulatory system -- CO2/bicarbonate. CO2 is generated in the mitochondrial matrix as a metabolic waste product of the oxidation of nutrients that powers ATP production. It is a lipid soluble gas that rapidly permeates the inner mitochondrial membrane (IMM) and produces bicarbonate (HCO3-) in a reaction accelerated by carbonic anhydrase (CA). The bicarbonate level is tracked physiologically by a bicarbonate-activated adenylyl cyclase, soluble adenylyl cyclase (sAC). Using structural Airyscan super-resolution imaging and functional measurements we find that sAC is primarily inside the mitochondria of ventricular myocytes where it generates cAMP when activated by HCO3-. Our data strongly suggest that ATP production in these mitochondria is regulated by this cAMP signaling cascade operating within the inter-membrane space (IMS) by activating local EPAC1 (Exchange Protein directly Activated by cAMP) which turns on Rap1 (Ras-related protein 1). Thus, mitochondrial ATP production is shown to be increased by bicarbonate-triggered sAC signaling through Rap1. Additional evidence is presented indicating that the cAMP signaling itself does not occur directly in the matrix. We also show that this third signaling process involving bicarbonate and sAC activates the cardiac mitochondrial ATP production machinery by working independently of, yet in conjunction with, [Ca2+]m-dependent ATP production to meet the energy needs of cellular activity in both health and disease. We propose that the bicarbonate and calcium signaling arms function in a resonant or complementary manner to match mitochondrial ATP production to the full range of energy consumption in cardiac ventricular myocytes in health and disease.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Saif Khan, Cornelius Gati
    Insight

    A complex interplay between structure, conformational dynamics and pharmacology defines distant regulation of G protein-coupled receptors.