Active suppression of a leaf meristem orchestrates determinate leaf growth

Abstract

Leaves are flat determinate organs derived from indeterminate shoot apical meristems. The presence of a specific leaf meristem is debated, as anatomical features typical of meristems are not present in leaves. Here we demonstrate that multiple NGATHA (NGA) and CINCINNATA-class-TCP (CIN-TCP) transcription factors act redundantly, shortly after leaf initiation, to gradually restrict the activity of a leaf meristem in Arabidopsis thaliana to marginal and basal domains, and that their absence confers persistent marginal growth to leaves, cotyledons and floral organs. The marginal restriction of the broadly acting leaf meristem following primordia initiation, is mediated by the juxtaposition of adaxial and abaxial domains and maintained by WOX homeobox transcription factors, whereas other marginal elaboration genes are dispensable for its maintenance. This genetic framework parallels the morphogenetic program of shoot apical meristems and may represent a relic of an ancestral shoot system from which seed plant leaves evolved.

Data availability

The following data sets were generated

Article and author information

Author details

  1. John Paul Alvarez

    School of Biological Sciences, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Chihiro Furumizu

    School of Biological Sciences, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Idan Efroni

    School of Biological Sciences, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Yuval Eshed

    School of Biological Sciences, Monash University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. John L Bowman

    School of Biological Sciences, Monash University, Melbourne, Australia
    For correspondence
    John.Bowman@monash.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7347-3691

Funding

Australian Research Council (DP110100070, DP130100177, DP160100892)

  • John Paul Alvarez
  • Chihiro Furumizu
  • John L Bowman

Israel Science Foundation (863-06)

  • John Paul Alvarez
  • Yuval Eshed

European Molecular Biology Organization (185-2010)

  • Idan Efroni

United States - Israel Binational Agricultural Research and Development Fund (3767-05)

  • John Paul Alvarez
  • Yuval Eshed
  • John L Bowman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Alvarez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,104
    views
  • 1,576
    downloads
  • 119
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. John Paul Alvarez
  2. Chihiro Furumizu
  3. Idan Efroni
  4. Yuval Eshed
  5. John L Bowman
(2016)
Active suppression of a leaf meristem orchestrates determinate leaf growth
eLife 5:e15023.
https://doi.org/10.7554/eLife.15023

Share this article

https://doi.org/10.7554/eLife.15023

Further reading

    1. Plant Biology
    Xiaoyan Liang, Caifu Jiang
    Insight

    Salt stress delays seed germination in plants by increasing the hydrolysis of arginine-derived urea.

    1. Plant Biology
    Xinyu Chen, Huasong Zou ... Xiaojing Fan
    Research Article

    Xanthomonas citri subsp. citri (Xcc), the causal agent of citrus canker, elicits canker symptoms in citrus plants because of the transcriptional activator-like (TAL) effector PthA4, which activates the expression of the citrus susceptibility gene CsLOB1. This study reports the regulation of the putative carbohydrate-binding protein gene Cs9g12620 by PthA4-mediated induction of CsLOB1 during Xcc infection. We found that the transcription of Cs9g12620 was induced by infection with Xcc in a PthA4-dependent manner. Even though it specifically bound to a putative TAL effector-binding element in the Cs9g12620 promoter, PthA4 exerted a suppressive effect on the promoter activity. In contrast, CsLOB1 bound to the Cs9g12620 promoter to activate its expression. The silencing of CsLOB1 significantly reduced the level of expression of Cs9g12620, which demonstrated that Cs9g12620 was directly regulated by CsLOB1. Intriguingly, PhtA4 interacted with CsLOB1 and exerted feedback control that suppressed the induction of expression of Cs9g12620 by CsLOB1. Transient overexpression and gene silencing revealed that Cs9g12620 was required for the optimal development of canker symptoms. These results support the hypothesis that the expression of Cs9g12620 is dynamically directed by PthA4 for canker formation through the PthA4-mediated induction of CsLOB1.