1. Structural Biology and Molecular Biophysics
  2. Plant Biology
Download icon

Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission

  1. Julia Santiago
  2. Benjamin Brandt
  3. Mari Wildhagen
  4. Ulrich Hohmann
  5. Ludwig A Hothorn
  6. Melinka A Butenko
  7. Michael Hothorn  Is a corresponding author
  1. University of Geneva, Switzerland
  2. University of Oslo, Norway
  3. Leibniz University, Germany
Research Article
  • Cited 94
  • Views 4,251
  • Annotations
Cite this article as: eLife 2016;5:e15075 doi: 10.7554/eLife.15075

Abstract

Plants constantly renew during their life cycle and thus require to shed senescent and damaged organs. Floral abscission is controlled by the leucine-rich repeat receptor kinase (LRR-RK) HAESA and the peptide hormone IDA. It is unknown how expression of IDA in the abscission zone leads to HAESA activation. Here we show that IDA is sensed directly by the HAESA ectodomain. Crystal structures of HAESA in complex with IDA reveal a hormone binding pocket that accommodates an active dodecamer peptide. A central hydroxyproline residue anchors IDA to the receptor. The HAESA co-receptor SERK1, a positive regulator of the floral abscission pathway, allows for high-affinity sensing of the peptide hormone by binding to an Arg-His-Asn motif in IDA. This sequence pattern is conserved among diverse plant peptides, suggesting that plant peptide hormone receptors may share a common ligand binding mode and activation mechanism.

Article and author information

Author details

  1. Julia Santiago

    Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Benjamin Brandt

    Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Mari Wildhagen

    Department of Biosciences, Section for Genetic and Evolutionary Biology, University of Oslo, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  4. Ulrich Hohmann

    Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Ludwig A Hothorn

    Institute of Biostatistics, Leibniz University, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Melinka A Butenko

    Department of Biosciences, Section for Genetic and Evolutionary Biology, University of Oslo, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael Hothorn

    Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneve, Switzerland
    For correspondence
    michael.hothorn@unige.ch
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Mingjie Zhang, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, China

Publication history

  1. Received: February 8, 2016
  2. Accepted: April 7, 2016
  3. Accepted Manuscript published: April 8, 2016 (version 1)
  4. Version of Record published: April 27, 2016 (version 2)

Copyright

© 2016, Santiago et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,251
    Page views
  • 1,145
    Downloads
  • 94
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Structural Biology and Molecular Biophysics
    Yihu Xie et al.
    Research Article Updated

    The evolutionarily conserved TRanscript-EXport (TREX) complex plays central roles during mRNP (messenger ribonucleoprotein) maturation and export from the nucleus to the cytoplasm. In yeast, TREX is composed of the THO sub-complex (Tho2, Hpr1, Tex1, Mft1, and Thp2), the DEAD box ATPase Sub2, and Yra1. Here we present a 3.7 Å cryo-EM structure of the yeast THO•Sub2 complex. The structure reveals the intimate assembly of THO revolving around its largest subunit Tho2. THO stabilizes a semi-open conformation of the Sub2 ATPase via interactions with Tho2. We show that THO interacts with the serine–arginine (SR)-like protein Gbp2 through both the RS domain and RRM domains of Gbp2. Cross-linking mass spectrometry analysis supports the extensive interactions between THO and Gbp2, further revealing that RRM domains of Gbp2 are in close proximity to the C-terminal domain of Tho2. We propose that THO serves as a landing pad to configure Gbp2 to facilitate its loading onto mRNP.

    1. Structural Biology and Molecular Biophysics
    Subu Subramanian et al.
    Research Article

    Clamp loaders are AAA+ ATPases that load sliding clamps onto DNA. We mapped the mutational sensitivity of the T4 bacteriophage sliding clamp and clamp loader by deep mutagenesis, and found that residues not involved in catalysis or binding display remarkable tolerance to mutation. An exception is a glutamine residue in the AAA+ module (Gln 118) that is not located at a catalytic or interfacial site. Gln 118 forms a hydrogen-bonded junction in a helical unit that we term the central coupler, because it connects the catalytic centers to DNA and the sliding clamp. A suppressor mutation indicates that hydrogen bonding in the junction is important, and molecular dynamics simulations reveal that it maintains rigidity in the central coupler. The glutamine-mediated junction is preserved in diverse AAA+ ATPases, suggesting that a connected network of hydrogen bonds that links ATP molecules is an essential aspect of allosteric communication in these proteins.