Rewiring MAP kinases in Saccharomyces cerevisiae to regulate novel targets through ubiquitination

  1. Benjamin Groves
  2. Arjun Khakhar
  3. Cory Nadel
  4. Richard Gardner
  5. Georg Seelig  Is a corresponding author
  1. University of Washington, United States

Abstract

Evolution has often copied and repurposed the mitogen-activated protein kinase (MAPK) signaling module. Understanding how connections form during evolution, in disease and across individuals requires knowledge of the basic tenets that govern kinase-substrate interactions. We identify criteria sufficient for establishing regulatory links between a MAPK and a non-native substrate. The yeast MAPK Fus3 and human MAPK ERK2 can be functionally redirected if only two conditions are met: the kinase and substrate contain matching interaction domains and the substrate includes a phospho-motif that can be phosphorylated by the kinase and recruit a downstream effector. We used a panel of interaction domains and phosphorylation-activated degradation motifs to demonstrate modular and scalable retargeting. We applied our approach to reshape the signaling behavior of an existing kinase pathway. Together, our results demonstrate that a MAPK can be largely defined by its interaction domains and compatible phospho-motifs and provide insight into how MAPK-substrate connections form.

Article and author information

Author details

  1. Benjamin Groves

    Department of Electrical Engineering, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Arjun Khakhar

    Department of Bioengineering, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4676-6533
  3. Cory Nadel

    Department of Pharmacology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Richard Gardner

    Department of Pharmacology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Georg Seelig

    Department of Computer Science and Engineering, University of Washington, Seattle, United States
    For correspondence
    gseelig@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3163-8782

Funding

National Science Foundation (EFMA-1137266)

  • Georg Seelig

WRF-IPD Innovations Fellows Program

  • Benjamin Groves

National Science Foundation (CCF-1317653)

  • Georg Seelig

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ivan Dikic, Goethe University Medical School, Germany

Publication history

  1. Received: February 12, 2016
  2. Accepted: August 14, 2016
  3. Accepted Manuscript published: August 15, 2016 (version 1)
  4. Version of Record published: September 12, 2016 (version 2)
  5. Version of Record updated: September 26, 2016 (version 3)

Copyright

© 2016, Groves et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,609
    Page views
  • 588
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin Groves
  2. Arjun Khakhar
  3. Cory Nadel
  4. Richard Gardner
  5. Georg Seelig
(2016)
Rewiring MAP kinases in Saccharomyces cerevisiae to regulate novel targets through ubiquitination
eLife 5:e15200.
https://doi.org/10.7554/eLife.15200

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Sara Scinicariello, Adrian Soderholm ... Gijs A Versteeg
    Research Article

    Tristetraprolin (TTP) is a critical negative immune regulator. It binds AU-rich elements in the untranslated-regions of many mRNAs encoding pro-inflammatory mediators, thereby accelerating their decay. A key but poorly understood mechanism of TTP regulation is its timely proteolytic removal: TTP is degraded by the proteasome through yet unidentified phosphorylation-controlled drivers. In this study, we set out to identify factors controlling TTP stability. Cellular assays showed that TTP is strongly lysine-ubiquitinated, which is required for its turnover. A genetic screen identified the ubiquitin E3 ligase HUWE1 as a strong regulator of TTP proteasomal degradation, which we found to control TTP stability indirectly by regulating its phosphorylation. Pharmacological assessment of multiple kinases revealed that HUWE1-regulated TTP phosphorylation and stability was independent of the previously characterized effects of MAPK-mediated S52/S178 phosphorylation. HUWE1 function was dependent on phosphatase and E3 ligase binding sites identified in the TTP C-terminus. Our findings indicate that while phosphorylation of S52/S178 is critical for TTP stabilization at earlier times after pro-inflammatory stimulation, phosphorylation of the TTP C-terminus controls its stability at later stages.

    1. Cell Biology
    Agustin Leonardo Lujan, Ombretta Foresti ... Vivek Malhotra
    Research Article

    We show that TANGO2 in mammalian cells localizes predominantly to mitochondria and partially at mitochondria sites juxtaposed to lipid droplets (LDs) and the endoplasmic reticulum. HepG2 cells and fibroblasts of patients lacking TANGO2 exhibit enlarged LDs. Quantitative lipidomics revealed a marked increase in lysophosphatidic acid (LPA) and a concomitant decrease in its biosynthetic precursor phosphatidic acid (PA). These changes were exacerbated in nutrient-starved cells. Based on our data, we suggest that TANGO2 function is linked to acyl-CoA metabolism, which is necessary for the acylation of LPA to generate PA. The defect in acyl-CoA availability impacts the metabolism of many other fatty acids, generates high levels of reactive oxygen (ROS), and promotes lipid peroxidation. We suggest that the increased size of LDs is a combination of enrichment in peroxidized lipids and a defect in their catabolism. Our findings help explain the physiological consequence of mutations in TANGO2 that induce acute metabolic crises, including rhabdomyolysis, cardiomyopathy, and cardiac arrhythmias, often leading to fatality upon starvation and stress.