1. Elisabeth A Geyer
  2. Shreoshi Majumdar
  3. Luke M Rice  Is a corresponding author
  1. UT Southwestern Medical Center, United States

Microtubules are hollow cylindrical polymers that have important roles in chromosome segregation, organelle transport and other processes inside cells. Microtubules are built from protein subunits called αβ-tubulin and abruptly switch between growing and shrinking. This switching property is known as "dynamic instability", and has captivated scientists since it was discovered over 30 years ago (Horio and Hotani, 1986; Mitchison and Kirschner, 1984).

The switch from the growing state to the shrinking state is known as catastrophe, and is essential for microtubules to work correctly. Catastrophe occurs when the microtubule loses its stabilizing cap, which is a biochemically distinct region near the growing end. Despite substantial efforts, both the size of this stabilizing cap and its relationship to microtubule growth rates have remained obscure. Now, in eLife, Thomas Surrey and co-workers at the Francis Crick Institute and the London Centre for Nanotechnology – including Christian Duellberg as first author – use state-of-the-art methods to resolve these longstanding conundrums (Figure 1; Duellberg et al., 2016).

A modernized form of a classic technique enables the growth and stabilization of microtubules to be studied.

(A) Left: Duellberg et al. used microfluidics to abruptly stop microtubule growth via the "washout" approach. Right: Sample data showing microtubule length versus time. Before washout, the microtubule grows steadily; after washout, it shrinks slowly for a time; and after catastrophe, it shrinks rapidly (Panel adapted from Figures 1A and 2A, Duellberg et al.). (B) Duellberg et al. observed correlations between the microtubule growth rate and the size of the stabilizing cap, which consists of GTP-bound αβ-tubulin subunits (indicated by the non-faded circles). The caps are marked by EB1 proteins (not shown explicitly).

In a simple sense, microtubule catastrophe results from a race between two competing processes. Microtubules grow by capturing αβ-tubulin subunits that are bound to a molecule called GTP. However, shortly after a new subunit is added to the polymer, its GTP molecule is hydrolyzed: this destabilizes the polymer and provides the driving force for catastrophe.

The time interval between the addition of the subunit and the hydrolysis of the GTP should create a cap that protects the growing microtubule against catastrophe. This simple view predicts that faster growing microtubules should have larger caps. Over the years, however, experiments to test this prediction have yielded conflicting results (Caplow and Shanks, 1996; Schek et al., 2007), resulting in a proliferation of different models that attempt to describe microtubule stabilization (reviewed in Bowne-Anderson et al., 2013).

“Washout” experiments are a classic way to measure microtubule stability and estimate cap size by suddenly diluting the solution around growing microtubules to stop their growth (Walker et al., 1991). After washout, the microtubule shrinks slowly for a short period of time before it begins to shrink rapidly. The time delay before rapid shrinking occurs is related to the size of the stabilizing cap. Using this approach, a classic early paper failed to find a relationship between the rate at which microtubules grow and their stability (Walker et al., 1991).

Duellberg et al. have now revitalized this washout approach by developing a new microfluidics-based method that enables much faster dilution (Figure 1A). This method also incorporates high-precision microtubule end tracking and averaging techniques previously developed by Surrey and co-workers (Maurer et al., 2014).

The new approach allowed Duellberg et al. to demonstrate that microtubules that are growing faster at the time of dilution experience a longer delay before they begin to rapidly shrink (Figure 1B). The cap size could also be estimated from the length of the slow-shrinking phase. Thus, microtubule growth rate and microtubule stability are correlated.

To provide more direct insight into the size of the cap and how it is lost, Duellberg et al. turned to the EB1 family of microtubule regulatory proteins. These proteins form ‘comets’ by binding to an extended region near the microtubule end (Bieling et al., 2007), and are thought to recognize unique structural features of the stabilizing cap (Zhang et al., 2015).

To determine whether microtubule stability is related to the size of EB comets, Duellberg et al. simultaneously monitored microtubule ends and fluorescently tagged EB proteins. They observed that faster growing microtubules recruited more EB protein at the growing end (as shown by more intense fluorescent ‘comets’). The number of high-affinity EB binding sites decreased exponentially after washout, and rapid shrinking began when the density of EB binding sites was reduced to about 20% of its maximal value.

Consistent with these findings, microtubules with more EB binding sites (brighter comets) at the time of dilution exhibited a longer time delay before rapid shrinking began. This time delay can also be predicted if the rates of three processes are known: microtubule growth, slow shrinkage and EB binding site loss.

By demonstrating that EB proteins label the cap region and therefore provide a way to visualize it, and by resolving a longstanding ambiguity about the relationship between the cap and microtubule growth rate, Duellberg et al. advance our understanding of microtubule stabilization. However, we cannot currently explain Duellberg et al.’s findings in terms of the conformations and biochemical properties of individual αβ-tubulin subunits. More generally, microtubules normally undergo catastrophe without the sudden dilution used by Duellberg et al.: defining the mechanisms that normally trigger catastrophe therefore remains another important challenge.

The high-quality data that Duellberg et al. report set a new standard for studies of other microtubule regulatory proteins. Their pioneering quantitative analyses will undoubtedly contribute to future advances in the understanding of dynamic instability and its regulation.

References

    1. Mitchison T
    2. Kirschner M
    (1984)
    Dynamic instability of microtubule growth
    Nature 312:237–242.

Article and author information

Author details

  1. Elisabeth A Geyer

    Departments of Biophysics and Biochemistry, UT Southwestern Medical Center, Dallas, United States
    Contributed equally with
    Shreoshi Majumdar
    Competing interests
    The authors declare that no competing interests exist.
  2. Shreoshi Majumdar

    Departments of Biophysics and Biochemistry, UT Southwestern Medical Center, Dallas, United States
    Contributed equally with
    Elisabeth A Geyer
    Competing interests
    The authors declare that no competing interests exist.
  3. Luke M Rice

    Departments of Biophysics and Biochemistry, UT Southwestern Medical Center, Dallas, United States
    For correspondence
    Luke.Rice@UTSouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.

Publication history

  1. Version of Record published: April 6, 2016 (version 1)

Copyright

© 2016, Geyer et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,299
    views
  • 114
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elisabeth A Geyer
  2. Shreoshi Majumdar
  3. Luke M Rice
(2016)
Microtubules: May I check your cap?
eLife 5:e15570.
https://doi.org/10.7554/eLife.15570
  1. Further reading

Further reading

    1. Structural Biology and Molecular Biophysics
    Colin H Peters, Rohit K Singh ... John R Bankston
    Research Article

    Lymphoid restricted membrane protein (LRMP) is a specific regulator of the hyperpolarization-activated cyclic nucleotide-sensitive isoform 4 (HCN4) channel. LRMP prevents cAMP-dependent potentiation of HCN4, but the interaction domains, mechanisms of action, and basis for isoform-specificity remain unknown. Here, we identify the domains of LRMP essential for this regulation, show that LRMP acts by disrupting the intramolecular signal transduction between cyclic nucleotide binding and gating, and demonstrate that multiple unique regions in HCN4 are required for LRMP isoform-specificity. Using patch clamp electrophysiology and Förster resonance energy transfer (FRET), we identified the initial 227 residues of LRMP and the N-terminus of HCN4 as necessary for LRMP to associate with HCN4. We found that the HCN4 N-terminus and HCN4-specific residues in the C-linker are necessary for regulation of HCN4 by LRMP. Finally, we demonstrated that LRMP-regulation can be conferred to HCN2 by addition of the HCN4 N-terminus along with mutation of five residues in the S5 region and C-linker to the cognate HCN4 residues. Taken together, these results suggest that LRMP inhibits HCN4 through an isoform-specific interaction involving the N-terminals of both proteins that prevents the transduction of cAMP binding into a change in channel gating, most likely via an HCN4-specific orientation of the N-terminus, C-linker, and S4-S5 linker.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.