Muscle contraction is required to maintain the pool of muscle progenitors via YAP and NOTCH during fetal myogenesis

  1. Joana Esteves de Lima
  2. Marie-Ange Bonnin
  3. Carmen Birchmeier
  4. Delphine Duprez  Is a corresponding author
  1. CNRS UMR 7622, IBPS-Developmental Biology Laboratory, France
  2. Max-Delbrück-Center for Molecular Medicine, Germany

Abstract

The importance of mechanical activity in the regulation of muscle progenitors during chick development has not been investigated. We show that immobilization decreases NOTCH activity and mimics a NOTCH loss-of-function phenotype, a reduction in the number of muscle progenitors and increased differentiation. Ligand-induced NOTCH activation prevents the reduction of muscle progenitors and the increase of differentiation upon immobilization. Inhibition of NOTCH ligand activity in muscle fibers suffices to reduce the progenitor pool. Furthermore, immobilization reduces the activity of the transcriptional co-activator YAP and the expression of the NOTCH ligand JAG2 in muscle fibers. YAP forced activity in muscle fibers prevents the decrease of JAG2 expression and the number of PAX7+ cells in immobilization conditions. Our results identify a novel mechanism acting downstream of muscle contraction, where YAP activates JAG2 expression in muscle fibers, which in turn regulates the pool of fetal muscle progenitors via NOTCH in a non cell-autonomous manner.

Article and author information

Author details

  1. Joana Esteves de Lima

    CNRS UMR 7622, IBPS-Developmental Biology Laboratory, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Marie-Ange Bonnin

    CNRS UMR 7622, IBPS-Developmental Biology Laboratory, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Carmen Birchmeier

    Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Delphine Duprez

    CNRS UMR 7622, IBPS-Developmental Biology Laboratory, Paris, France
    For correspondence
    delphine.duprez@upmc.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0248-7417

Funding

Agence Nationale de la Recherche (ANR-12-BSV1-0038)

  • Delphine Duprez

AFM-Téléthon (AFM N{degree sign}16752/16826)

  • Delphine Duprez

Fondation pour la Recherche Médicale (DEQ20140329500)

  • Delphine Duprez

Centre National de la Recherche Scientifique

  • Delphine Duprez

Institut National de la Santé et de la Recherche Médicale

  • Delphine Duprez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Esteves de Lima et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,900
    views
  • 670
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joana Esteves de Lima
  2. Marie-Ange Bonnin
  3. Carmen Birchmeier
  4. Delphine Duprez
(2016)
Muscle contraction is required to maintain the pool of muscle progenitors via YAP and NOTCH during fetal myogenesis
eLife 5:e15593.
https://doi.org/10.7554/eLife.15593

Share this article

https://doi.org/10.7554/eLife.15593

Further reading

    1. Developmental Biology
    Nathaniel C Nelson, Matthias C Kugler
    Insight

    Cells called alveolar myofibroblasts, which have a central role in the development of the lung after birth, receive an orchestrated input from a range of different signaling pathways.

    1. Developmental Biology
    Imran S Khan, Christopher Molina ... Dean Sheppard
    Research Article

    Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGFβ) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear. Here, we utilize multiple murine models of alveolar simplification and comparative single-cell RNA sequencing to identify shared mechanisms that could contribute to BPD pathogenesis. Single-cell RNA sequencing reveals a profound loss of myofibroblasts in two models of BPD and identifies gene expression signatures of increased TGFβ signaling, cell cycle arrest, and impaired proliferation in myofibroblasts. Using pharmacologic and genetic approaches, we find no evidence that increased TGFβ signaling in the lung mesenchyme contributes to alveolar simplification. In contrast, this is likely a failed compensatory response, since none of our approaches to inhibit TGFβ signaling protect mice from alveolar simplification due to hyperoxia while several make simplification worse. In contrast, we find that impaired myofibroblast proliferation is a central feature in several murine models of BPD, and we show that inhibiting myofibroblast proliferation is sufficient to cause pathologic alveolar simplification. Our results underscore the importance of impaired myofibroblast proliferation as a central feature of alveolar simplification and suggest that efforts to reverse this process could have therapeutic value in BPD.