Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation

  1. William John Allen
  2. Robin Adam Corey
  3. Peter Oatley
  4. Richard Barry Sessions
  5. Sheena E Radford
  6. Roman Tuma
  7. Ian Collinson  Is a corresponding author
  1. University of Bristol, United Kingdom
  2. University of Leeds, United Kingdom

Abstract

The essential process of protein secretion is achieved by the ubiquitous Sec machinery. In prokaryotes, the drive for translocation comes from ATP hydrolysis by the cytosolic motor-protein SecA, in concert with the proton motive force (PMF). However, the mechanism through which ATP hydrolysis by SecA is coupled to directional movement through SecYEG is unclear. Here, we combine all-atom molecular dynamics (MD) simulations with single molecule FRET and biochemical assays. We show that ATP binding by SecA causes opening of the SecY-channel at long range, while substrates at the SecY-channel entrance feed back to regulate nucleotide exchange by SecA. This two-way communication suggests a new, unifying 'Brownian ratchet' mechanism, whereby ATP binding and hydrolysis bias the direction of polypeptide diffusion. The model represents a solution to the problem of transporting inherently variable substrates such as polypeptides, and may underlie mechanisms of other motors that translocate proteins and nucleic acids.

Article and author information

Author details

  1. William John Allen

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Robin Adam Corey

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Peter Oatley

    Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Richard Barry Sessions

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Sheena E Radford

    AStbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Roman Tuma

    Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Ian Collinson

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    For correspondence
    ian.collinson@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Ramanujan S Hegde, MRC Laboratory of Molecular Biology, United Kingdom

Version history

  1. Received: February 26, 2016
  2. Accepted: May 14, 2016
  3. Accepted Manuscript published: May 16, 2016 (version 1)
  4. Version of Record published: June 14, 2016 (version 2)
  5. Version of Record updated: June 28, 2016 (version 3)

Copyright

© 2016, Allen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,069
    Page views
  • 1,081
    Downloads
  • 81
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William John Allen
  2. Robin Adam Corey
  3. Peter Oatley
  4. Richard Barry Sessions
  5. Sheena E Radford
  6. Roman Tuma
  7. Ian Collinson
(2016)
Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation
eLife 5:e15598.
https://doi.org/10.7554/eLife.15598

Share this article

https://doi.org/10.7554/eLife.15598

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Kristian Davidsen, Jonathan S Marvin ... Lucas B Sullivan
    Research Article

    Intracellular levels of the amino acid aspartate are responsive to changes in metabolism in mammalian cells and can correspondingly alter cell function, highlighting the need for robust tools to measure aspartate abundance. However, comprehensive understanding of aspartate metabolism has been limited by the throughput, cost, and static nature of the mass spectrometry (MS)-based measurements that are typically employed to measure aspartate levels. To address these issues, we have developed a green fluorescent protein (GFP)-based sensor of aspartate (jAspSnFR3), where the fluorescence intensity corresponds to aspartate concentration. As a purified protein, the sensor has a 20-fold increase in fluorescence upon aspartate saturation, with dose-dependent fluorescence changes covering a physiologically relevant aspartate concentration range and no significant off target binding. Expressed in mammalian cell lines, sensor intensity correlated with aspartate levels measured by MS and could resolve temporal changes in intracellular aspartate from genetic, pharmacological, and nutritional manipulations. These data demonstrate the utility of jAspSnFR3 and highlight the opportunities it provides for temporally resolved and high-throughput applications of variables that affect aspartate levels.

    1. Biochemistry and Chemical Biology
    Chi-Ning Chuang, Hou-Cheng Liu ... Ting-Fang Wang
    Research Article

    Serine(S)/threonine(T)-glutamine(Q) cluster domains (SCDs), polyglutamine (polyQ) tracts and polyglutamine/asparagine (polyQ/N) tracts are Q-rich motifs found in many proteins. SCDs often are intrinsically disordered regions that mediate protein phosphorylation and protein-protein interactions. PolyQ and polyQ/N tracts are structurally flexible sequences that trigger protein aggregation. We report that due to their high percentages of STQ or STQN amino acid content, four SCDs and three prion-causing Q/N-rich motifs of yeast proteins possess autonomous protein expression-enhancing activities. Since these Q-rich motifs can endow proteins with structural and functional plasticity, we suggest that they represent useful toolkits for evolutionary novelty. Comparative Gene Ontology (GO) analyses of the near-complete proteomes of 26 representative model eukaryotes reveal that Q-rich motifs prevail in proteins involved in specialized biological processes, including Saccharomyces cerevisiae RNA-mediated transposition and pseudohyphal growth, Candida albicans filamentous growth, ciliate peptidyl-glutamic acid modification and microtubule-based movement, Tetrahymena thermophila xylan catabolism and meiosis, Dictyostelium discoideum development and sexual cycles, Plasmodium falciparum infection, and the nervous systems of Drosophila melanogaster, Mus musculus and Homo sapiens. We also show that Q-rich-motif proteins are expanded massively in 10 ciliates with reassigned TAAQ and TAGQ codons. Notably, the usage frequency of CAGQ is much lower in ciliates with reassigned TAAQ and TAGQ codons than in organisms with expanded and unstable Q runs (e.g. D. melanogaster and H. sapiens), indicating that the use of noncanonical stop codons in ciliates may have coevolved with codon usage biases to avoid triplet repeat disorders mediated by CAG/GTC replication slippage.