Regulation of starvation-induced hyperactivity by insulin and glucagon signaling in adult Drosophila

  1. Yue Yu
  2. Rui Huang  Is a corresponding author
  3. Jie Ye
  4. Vivian Zhang
  5. Chao Wu
  6. Guo Cheng
  7. Junling Jia
  8. Liming Wang  Is a corresponding author
  1. Zhejiang University, China
  2. University of California, Berkeley, United States

Abstract

Starvation induces sustained increase in locomotion, which facilitates food localization and acquisition and hence composes an important aspect of food-seeking behavior. We investigated how nutritional states modulated starvation-induced hyperactivity in adult Drosophila. The receptor of adipokinetic hormone (AKHR), the insect analog of glucagon, was required for starvation-induced hyperactivity. AKHR was expressed in a small group of octopaminergic neurons in the brain. Silencing AKHR+ neurons and blocking octopamine signaling in these neurons eliminated starvation-induced hyperactivity, whereas activation of these neurons accelerated the onset of hyperactivity upon starvation. Neither AKHR nor AKHR+ neurons were involved in increased food consumption upon starvation, suggesting that starvation-induced hyperactivity and food consumption are independently regulated. Single cell analysis of AKHR+ neurons identified the co-expression of Drosophila insulin-like receptor (dInR), which imposed suppressive effect on starvation-induced hyperactivity. Therefore, insulin and glucagon signaling exert opposite effects on starvation-induced hyperactivity via a common neural target in Drosophila.

Article and author information

Author details

  1. Yue Yu

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Rui Huang

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    For correspondence
    huangrui0716@sina.com
    Competing interests
    The authors declare that no competing interests exist.
  3. Jie Ye

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Vivian Zhang

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Chao Wu

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Guo Cheng

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Junling Jia

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Liming Wang

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    For correspondence
    lmwang83@zju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7758-1120

Funding

Thousand Young Talents Plan of China

  • Liming Wang

National Natural Science Foundation of China (31522026)

  • Liming Wang

Fundamental Research Funds for the Central Universities of China (2016QN81010)

  • Liming Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Yu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,137
    views
  • 1,396
    downloads
  • 114
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yue Yu
  2. Rui Huang
  3. Jie Ye
  4. Vivian Zhang
  5. Chao Wu
  6. Guo Cheng
  7. Junling Jia
  8. Liming Wang
(2016)
Regulation of starvation-induced hyperactivity by insulin and glucagon signaling in adult Drosophila
eLife 5:e15693.
https://doi.org/10.7554/eLife.15693

Share this article

https://doi.org/10.7554/eLife.15693

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Cesare V Parise, Marc O Ernst
    Research Article

    Audiovisual information reaches the brain via both sustained and transient input channels, representing signals’ intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals. To account for the present results, we developed a biologically inspired, general-purpose model for multisensory integration, the multisensory correlation detectors, which combines correlated input from unimodal transient channels. Besides accounting for the results of our psychophysical experiments, this model could quantitatively replicate several recent findings in multisensory research, as tested against a large collection of published datasets. In particular, the model could simultaneously account for the perceived timing of audiovisual events, multisensory facilitation in detection tasks, causality judgments, and optimal integration. This study demonstrates that several phenomena in multisensory research that were previously considered unrelated, all stem from the integration of correlated input from unimodal transient channels.

    1. Neuroscience
    Xing Xiao, Gagik Yeghiazaryan ... Anne Christine Hausen
    Short Report

    Orexin signaling in the ventral tegmental area and substantia nigra promotes locomotion and reward processing, but it is not clear whether dopaminergic neurons directly mediate these effects. We show that dopaminergic neurons in these areas mainly express orexin receptor subtype 1 (Ox1R). In contrast, only a minor population in the medial ventral tegmental area express orexin receptor subtype 2 (Ox2R). To analyze the functional role of Ox1R signaling in dopaminergic neurons, we deleted Ox1R specifically in dopamine transporter-expressing neurons of mice and investigated the functional consequences. Deletion of Ox1R increased locomotor activity and exploration during exposure to novel environments or when intracerebroventricularely injected with orexin A. Spontaneous activity in home cages, anxiety, reward processing, and energy metabolism did not change. Positron emission tomography imaging revealed that Ox1R signaling in dopaminergic neurons affected distinct neural circuits depending on the stimulation mode. In line with an increase of neural activity in the lateral paragigantocellular nucleus (LPGi) of Ox1RΔDAT mice, we found that dopaminergic projections innervate the LPGi in regions where the inhibitory dopamine receptor subtype D2 but not the excitatory D1 subtype resides. These data suggest a crucial regulatory role of Ox1R signaling in dopaminergic neurons in novelty-induced locomotion and exploration.