Regulation of starvation-induced hyperactivity by insulin and glucagon signaling in adult Drosophila

  1. Yue Yu
  2. Rui Huang  Is a corresponding author
  3. Jie Ye
  4. Vivian Zhang
  5. Chao Wu
  6. Guo Cheng
  7. Junling Jia
  8. Liming Wang  Is a corresponding author
  1. Zhejiang University, China
  2. University of California, Berkeley, United States

Abstract

Starvation induces sustained increase in locomotion, which facilitates food localization and acquisition and hence composes an important aspect of food-seeking behavior. We investigated how nutritional states modulated starvation-induced hyperactivity in adult Drosophila. The receptor of adipokinetic hormone (AKHR), the insect analog of glucagon, was required for starvation-induced hyperactivity. AKHR was expressed in a small group of octopaminergic neurons in the brain. Silencing AKHR+ neurons and blocking octopamine signaling in these neurons eliminated starvation-induced hyperactivity, whereas activation of these neurons accelerated the onset of hyperactivity upon starvation. Neither AKHR nor AKHR+ neurons were involved in increased food consumption upon starvation, suggesting that starvation-induced hyperactivity and food consumption are independently regulated. Single cell analysis of AKHR+ neurons identified the co-expression of Drosophila insulin-like receptor (dInR), which imposed suppressive effect on starvation-induced hyperactivity. Therefore, insulin and glucagon signaling exert opposite effects on starvation-induced hyperactivity via a common neural target in Drosophila.

Article and author information

Author details

  1. Yue Yu

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Rui Huang

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    For correspondence
    huangrui0716@sina.com
    Competing interests
    The authors declare that no competing interests exist.
  3. Jie Ye

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Vivian Zhang

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Chao Wu

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Guo Cheng

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Junling Jia

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Liming Wang

    Life Sciences Institute, Zhejiang University, Hangzhou, China
    For correspondence
    lmwang83@zju.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7758-1120

Funding

Thousand Young Talents Plan of China

  • Liming Wang

National Natural Science Foundation of China (31522026)

  • Liming Wang

Fundamental Research Funds for the Central Universities of China (2016QN81010)

  • Liming Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Yu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,168
    views
  • 1,398
    downloads
  • 114
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yue Yu
  2. Rui Huang
  3. Jie Ye
  4. Vivian Zhang
  5. Chao Wu
  6. Guo Cheng
  7. Junling Jia
  8. Liming Wang
(2016)
Regulation of starvation-induced hyperactivity by insulin and glucagon signaling in adult Drosophila
eLife 5:e15693.
https://doi.org/10.7554/eLife.15693

Share this article

https://doi.org/10.7554/eLife.15693

Further reading

    1. Neuroscience
    William T Redman, Santiago Acosta-Mendoza ... Michael J Goard
    Research Article

    Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the presence and degree of heterogeneity of grid properties within individual modules. We find evidence for small, but robust, variability and hypothesize that this property of the grid code could enhance the encoding of local spatial information. Performing analysis on synthetic populations of grid cells, where we have complete control over the amount heterogeneity in grid properties, we demonstrate that grid property variability of a similar magnitude to the analyzed data leads to significantly decreased decoding error. This holds even when restricted to activity from a single module. Our results highlight how the heterogeneity of the neural response properties may benefit coding and opens new directions for theoretical and experimental analysis of grid cells.

    1. Genetics and Genomics
    2. Neuroscience
    Monique Marylin Alves de Almeida, Yves De Repentigny ... Rashmi Kothary
    Research Article

    Spinal muscular atrophy (SMA) is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. While traditionally viewed as a motor neuron disorder, there is involvement of various peripheral organs in SMA. Notably, fatty liver has been observed in SMA mouse models and SMA patients. Nevertheless, it remains unclear whether intrinsic depletion of SMN protein in the liver contributes to pathology in the peripheral or central nervous systems. To address this, we developed a mouse model with a liver-specific depletion of SMN by utilizing an Alb-Cre transgene together with one Smn2B allele and one Smn1 exon 7 allele flanked by loxP sites. Initially, we evaluated phenotypic changes in these mice at postnatal day 19 (P19), when the severe model of SMA, the Smn2B/- mice, exhibit many symptoms of the disease. The liver-specific SMN depletion does not induce motor neuron death, neuromuscular pathology or muscle atrophy, characteristics typically observed in the Smn2B/- mouse at P19. However, mild liver steatosis was observed, although no changes in liver function were detected. Notably, pancreatic alterations resembled that of Smn2B/-mice, with a decrease in insulin-producing β-cells and an increase in glucagon-producingα-cells, accompanied by a reduction in blood glucose and an increase in plasma glucagon and glucagon-like peptide (GLP-1). These changes were transient, as mice at P60 exhibited recovery of liver and pancreatic function. While the mosaic pattern of the Cre-mediated excision precludes definitive conclusions regarding the contribution of liver-specific SMN depletion to overall tissue pathology, our findings highlight an intricate connection between liver function and pancreatic abnormalities in SMA.