PtdInsP2 and PtdSer cooperate to trap synaptotagmin-1 to the plasma membrane in the presence of calcium

  1. Ángel Pérez-Lara
  2. Anusa Thapa
  3. Sarah B Nyenhuis
  4. David A Nyenhuis
  5. Partho Halder
  6. Michael Tietzel
  7. Kai Tittmann
  8. David S Cafiso  Is a corresponding author
  9. Reinhard Jahn  Is a corresponding author
  1. Max Planck Institute for Biophysical Chemistry, Germany
  2. University of Virginia, United States
  3. Georg-August University Göttingen, Germany
  4. Georg-August University, Germany

Abstract

The Ca2+-sensor synaptotagmin-1 that triggers neuronal exocytosis binds to negatively charged membrane lipids (mainly phosphatidylserine, PtdSer, and phosphoinositides, PtdIns) but the molecular details of this process are not fully understood. Using quantitative thermodynamic, kinetic and structural methods we show that synaptotagmin-1 (from Rattus norvegicus and expressed in E.coli) binds to PtdIns(4,5)P2 via a polybasic lysine patch in the C2B domain, which may promote priming/docking of synaptic vesicles. Ca2+ neutralizes the negative charges of the Ca2+ binding sites, resulting in the penetration of synaptotagmin-1 into the membrane, via binding of PtdSer, and the increase of the affinity of the polybasic lysine patch to PtdIns(4,5)P2. These Ca2+-induced events decrease the dissociation rate of synaptotagmin-1 membrane binding while the association rate remains unchanged. We conclude that both membrane penetration and the increased residence time of synaptotagmin-1 at the plasma membrane are crucial for triggering exocytotic membrane fusion.

Article and author information

Author details

  1. Ángel Pérez-Lara

    Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2736-3501
  2. Anusa Thapa

    Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  3. Sarah B Nyenhuis

    Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  4. David A Nyenhuis

    Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  5. Partho Halder

    Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    No competing interests declared.
  6. Michael Tietzel

    Department of Molecular Enzymology, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany
    Competing interests
    No competing interests declared.
  7. Kai Tittmann

    Department of Molecular Enzymology, Göttingen Center for Molecular Biosciences, Georg-August University, Göttingen, Germany
    Competing interests
    No competing interests declared.
  8. David S Cafiso

    Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, United States
    For correspondence
    cafiso@virginia.edu
    Competing interests
    No competing interests declared.
  9. Reinhard Jahn

    Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    For correspondence
    rjahn@gwdg.de
    Competing interests
    Reinhard Jahn, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1542-3498

Funding

National Institutes of Health (P01 GM072694)

  • David S Cafiso
  • Reinhard Jahn

Deutsche Forschungsgemeinschaft (SFB803)

  • Ángel Pérez-Lara
  • Partho Halder
  • Reinhard Jahn

Max-Planck-Gesellschaft (Postdoctoral Fellowship)

  • Ángel Pérez-Lara
  • Partho Halder

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Pérez-Lara et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,452
    views
  • 747
    downloads
  • 97
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ángel Pérez-Lara
  2. Anusa Thapa
  3. Sarah B Nyenhuis
  4. David A Nyenhuis
  5. Partho Halder
  6. Michael Tietzel
  7. Kai Tittmann
  8. David S Cafiso
  9. Reinhard Jahn
(2016)
PtdInsP2 and PtdSer cooperate to trap synaptotagmin-1 to the plasma membrane in the presence of calcium
eLife 5:e15886.
https://doi.org/10.7554/eLife.15886

Share this article

https://doi.org/10.7554/eLife.15886

Further reading

    1. Computational and Systems Biology
    2. Structural Biology and Molecular Biophysics
    Bin Zheng, Meimei Duan ... Peng Zheng
    Research Article

    Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding. This conserved domain, found across orthopoxviruses, was experimentally validated and shown to be critical for viral adhesion, making it an ideal target for antiviral drug development. Targeting this domain, we designed a protein inhibitor, which disrupted the H3-HS interaction, inhibited viral infection in vitro and viral replication in vivo, offering a promising antiviral candidate. Our findings reveal a novel therapeutic target of MPXV, demonstrating the potential of combination of AI-driven methods and MD simulations to accelerate antiviral drug discovery.

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.