PtdInsP2 and PtdSer cooperate to trap synaptotagmin-1 to the plasma membrane in the presence of calcium

  1. Ángel Pérez-Lara
  2. Anusa Thapa
  3. Sarah B Nyenhuis
  4. David A Nyenhuis
  5. Partho Halder
  6. Michael Tietzel
  7. Kai Tittmann
  8. David S Cafiso  Is a corresponding author
  9. Reinhard Jahn  Is a corresponding author
  1. Max Planck Institute for Biophysical Chemistry, Germany
  2. University of Virginia, United States
  3. Georg-August University Göttingen, Germany
  4. Georg-August University, Germany

Abstract

The Ca2+-sensor synaptotagmin-1 that triggers neuronal exocytosis binds to negatively charged membrane lipids (mainly phosphatidylserine, PtdSer, and phosphoinositides, PtdIns) but the molecular details of this process are not fully understood. Using quantitative thermodynamic, kinetic and structural methods we show that synaptotagmin-1 (from Rattus norvegicus and expressed in E.coli) binds to PtdIns(4,5)P2 via a polybasic lysine patch in the C2B domain, which may promote priming/docking of synaptic vesicles. Ca2+ neutralizes the negative charges of the Ca2+ binding sites, resulting in the penetration of synaptotagmin-1 into the membrane, via binding of PtdSer, and the increase of the affinity of the polybasic lysine patch to PtdIns(4,5)P2. These Ca2+-induced events decrease the dissociation rate of synaptotagmin-1 membrane binding while the association rate remains unchanged. We conclude that both membrane penetration and the increased residence time of synaptotagmin-1 at the plasma membrane are crucial for triggering exocytotic membrane fusion.

Article and author information

Author details

  1. Ángel Pérez-Lara

    Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2736-3501
  2. Anusa Thapa

    Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  3. Sarah B Nyenhuis

    Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  4. David A Nyenhuis

    Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, United States
    Competing interests
    No competing interests declared.
  5. Partho Halder

    Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    Competing interests
    No competing interests declared.
  6. Michael Tietzel

    Department of Molecular Enzymology, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany
    Competing interests
    No competing interests declared.
  7. Kai Tittmann

    Department of Molecular Enzymology, Göttingen Center for Molecular Biosciences, Georg-August University, Göttingen, Germany
    Competing interests
    No competing interests declared.
  8. David S Cafiso

    Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, United States
    For correspondence
    cafiso@virginia.edu
    Competing interests
    No competing interests declared.
  9. Reinhard Jahn

    Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
    For correspondence
    rjahn@gwdg.de
    Competing interests
    Reinhard Jahn, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1542-3498

Funding

National Institutes of Health (P01 GM072694)

  • David S Cafiso
  • Reinhard Jahn

Deutsche Forschungsgemeinschaft (SFB803)

  • Ángel Pérez-Lara
  • Partho Halder
  • Reinhard Jahn

Max-Planck-Gesellschaft (Postdoctoral Fellowship)

  • Ángel Pérez-Lara
  • Partho Halder

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Axel T Brunger, Stanford University Medical Center, United States

Version history

  1. Received: March 10, 2016
  2. Accepted: October 25, 2016
  3. Accepted Manuscript published: October 28, 2016 (version 1)
  4. Version of Record published: November 25, 2016 (version 2)

Copyright

© 2016, Pérez-Lara et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,408
    views
  • 742
    downloads
  • 91
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ángel Pérez-Lara
  2. Anusa Thapa
  3. Sarah B Nyenhuis
  4. David A Nyenhuis
  5. Partho Halder
  6. Michael Tietzel
  7. Kai Tittmann
  8. David S Cafiso
  9. Reinhard Jahn
(2016)
PtdInsP2 and PtdSer cooperate to trap synaptotagmin-1 to the plasma membrane in the presence of calcium
eLife 5:e15886.
https://doi.org/10.7554/eLife.15886

Share this article

https://doi.org/10.7554/eLife.15886

Further reading

    1. Structural Biology and Molecular Biophysics
    Abdul Wasim, Sneha Menon, Jagannath Mondal
    Research Article

    Intrinsically disordered protein α-synuclein (αS) is implicated in Parkinson’s disease due to its aberrant aggregation propensity. In a bid to identify the traits of its aggregation, here we computationally simulate the multi-chain association process of αS in aqueous as well as under diverse environmental perturbations. In particular, the aggregation of αS in aqueous and varied environmental condition led to marked concentration differences within protein aggregates, resembling liquid-liquid phase separation (LLPS). Both saline and crowded settings enhanced the LLPS propensity. However, the surface tension of αS droplet responds differently to crowders (entropy-driven) and salt (enthalpy-driven). Conformational analysis reveals that the IDP chains would adopt extended conformations within aggregates and would maintain mutually perpendicular orientations to minimize inter-chain electrostatic repulsions. The droplet stability is found to stem from a diminished intra-chain interactions in the C-terminal regions of αS, fostering inter-chain residue-residue interactions. Intriguingly, a graph theory analysis identifies small-world-like networks within droplets across environmental conditions, suggesting the prevalence of a consensus interaction patterns among the chains. Together these findings suggest a delicate balance between molecular grammar and environment-dependent nuanced aggregation behavior of αS.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Sandeep K Ravala, Sendi Rafael Adame-Garcia ... John JG Tesmer
    Research Article

    PIP3-dependent Rac exchanger 1 (P-Rex1) is abundantly expressed in neutrophils and plays central roles in chemotaxis and cancer metastasis by serving as a guanine-nucleotide exchange factor (GEF) for Rac. The enzyme is synergistically activated by PIP3 and heterotrimeric Gβγ subunits, but mechanistic details remain poorly understood. While investigating the regulation of P-Rex1 by PIP3, we discovered that Ins(1,3,4,5)P4 (IP4) inhibits P-Rex1 activity and induces large decreases in backbone dynamics in diverse regions of the protein. Cryo-electron microscopy analysis of the P-Rex1·IP4 complex revealed a conformation wherein the pleckstrin homology (PH) domain occludes the active site of the Dbl homology (DH) domain. This configuration is stabilized by interactions between the first DEP domain (DEP1) and the DH domain and between the PH domain and a 4-helix bundle (4HB) subdomain that extends from the C-terminal domain of P-Rex1. Disruption of the DH–DEP1 interface in a DH/PH-DEP1 fragment enhanced activity and led to a more extended conformation in solution, whereas mutations that constrain the occluded conformation led to decreased GEF activity. Variants of full-length P-Rex1 in which the DH–DEP1 and PH–4HB interfaces were disturbed exhibited enhanced activity during chemokine-induced cell migration, confirming that the observed structure represents the autoinhibited state in living cells. Interactions with PIP3-containing liposomes led to disruption of these interfaces and increased dynamics protein-wide. Our results further suggest that inositol phosphates such as IP4 help to inhibit basal P-Rex1 activity in neutrophils, similar to their inhibitory effects on phosphatidylinositol-3-kinase.