The Lamin B receptor is essential for cholesterol synthesis and perturbed by disease-causing mutations

Abstract

Lamin B receptor (LBR) is a polytopic membrane protein residing in the inner nuclear membrane in association with the nuclear lamina. We demonstrate that human LBR is essential for cholesterol synthesis. LBR mutant derivatives implicated in Greenberg skeletal dysplasia or Pelger-Huët anomaly fail to rescue the cholesterol auxotrophy of a LBR-deficient human cell line, consistent with a loss-of-function mechanism for these congenital disorders. These disease-causing variants fall into two classes: point mutations in the sterol reductase domain perturb enzymatic activity by reducing the affinity for the essential cofactor NADPH, while LBR truncations render the mutant protein metabolically unstable, leading to its rapid degradation at the inner nuclear membrane. Thus, metabolically unstable LBR variants may serve as long-sought-after model substrates enabling previously impossible investigations of poorly understood protein turnover mechanisms at the inner nuclear membrane of higher eukaryotes.

Article and author information

Author details

  1. Pei-Ling Tsai

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Chenguang Zhao

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elizabeth Turner

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Christian Dirk Schlieker

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    For correspondence
    christian.schlieker@yale.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Stephen G Young, University of California, Los Angeles, United States

Version history

  1. Received: March 13, 2016
  2. Accepted: June 20, 2016
  3. Accepted Manuscript published: June 23, 2016 (version 1)
  4. Version of Record published: July 19, 2016 (version 2)

Copyright

© 2016, Tsai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,785
    views
  • 1,049
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pei-Ling Tsai
  2. Chenguang Zhao
  3. Elizabeth Turner
  4. Christian Dirk Schlieker
(2016)
The Lamin B receptor is essential for cholesterol synthesis and perturbed by disease-causing mutations
eLife 5:e16011.
https://doi.org/10.7554/eLife.16011

Share this article

https://doi.org/10.7554/eLife.16011

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Amy H Andreotti, Volker Dötsch
    Editorial

    The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.