Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation

  1. Bianca Hartmann
  2. Timothy Wai
  3. Hao Hu
  4. Thomas MacVicar
  5. Luciana Musante
  6. Björn Fischer-Zirnsak
  7. Werner Stenzel
  8. Ralph Graef
  9. Lambert van den Heuvel
  10. Hans-Hilger Ropers
  11. Thomas F Wienker
  12. Christoph Hübner
  13. Thomas Langer
  14. Angela M Kaindl  Is a corresponding author
  1. Charité University Medicine, Germany
  2. Institut Necker Enfants Malades, INSERM U1151, CNRS UMR 8253, France
  3. Guangzhou Women and Children's Medical Center, China
  4. Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Germany
  5. Max Planck Institute for Molecular Genetics, Germany
  6. University of Potsdam, Germany
  7. Radboud University Medical Center, Netherlands

Abstract

Mitochondriopathies often present clinically as multisystemic disorders of primarily high-energy consuming organs. Assembly, turnover, and surveillance of mitochondrial proteins are essential for mitochondrial function and a key task of AAA family members of metalloproteases. We identified a homozygous mutation in the nuclear encoded mitochondrial escape 1-like 1 gene YME1L1, member of the AAA protease family, as a cause of a novel mitochondriopathy in a consanguineous pedigree of Saudi Arabian descent. The homozygous missense mutation, located in a highly conserved region in the mitochondrial pre-sequence, inhibits cleavage of YME1L1 by the mitochondrial processing peptidase, which culminates in the rapid degradation of YME1L1 precursor protein. Impaired YME1L1 function causes a proliferation defect and mitochondrial network fragmentation due to abnormal processing of OPA1. Our results identify mutations in YME1L1 as a cause of a mitochondriopathy with optic nerve atrophy highlighting the importance of YME1L1 for mitochondrial functionality in humans.

Data availability

The following data sets were generated
    1. Hartmann B et al
    (2016) Sequence Reads Archive (SRA)
    Publicly available at the NCBI Gene Expression Omnibus (accession no: SRP073309).

Article and author information

Author details

  1. Bianca Hartmann

    Institute of Cell Biology and Neurobiology, Charité University Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Timothy Wai

    Institut Necker Enfants Malades, INSERM U1151, CNRS UMR 8253, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Hao Hu

    Guangzhou Women and Children's Medical Center, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas MacVicar

    Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Luciana Musante

    Max Planck Institute for Molecular Genetics, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Björn Fischer-Zirnsak

    Max Planck Institute for Molecular Genetics, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Werner Stenzel

    Institute of Neuropathology, Charité University Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Ralph Graef

    Department of Cell Biology, University of Potsdam, Potsdam, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Lambert van den Heuvel

    Nijmegen Center for Mitochondrial Disorders, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  10. Hans-Hilger Ropers

    Max Planck Institute for Molecular Genetics, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Thomas F Wienker

    Max Planck Institute for Molecular Genetics, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Christoph Hübner

    Department of Pediatric Neurology, Charité University Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Thomas Langer

    Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Angela M Kaindl

    Institute of Cell Biology and Neurobiology, Charité University Medicine, Berlin, Germany
    For correspondence
    angela.kaindl@charite.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9454-206X

Funding

Deutsche Forschungsgemeinschaft

  • Angela M Kaindl

Charité Universitätsmedizin Berlin

  • Angela M Kaindl

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were carried out in accordance to the national ethic principles (registration no. T0344/12, Charité).

Human subjects: Informed consent was obtained from the parents of the patients for the molecular genetic analysis, the publication of clinical data, photos, magnetic resonance images (MRI), and studies on fibroblasts. The human study was approved by the local ethics committee of the Charit� (approval no. EA1/212/08).

Copyright

© 2016, Hartmann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,980
    views
  • 591
    downloads
  • 96
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bianca Hartmann
  2. Timothy Wai
  3. Hao Hu
  4. Thomas MacVicar
  5. Luciana Musante
  6. Björn Fischer-Zirnsak
  7. Werner Stenzel
  8. Ralph Graef
  9. Lambert van den Heuvel
  10. Hans-Hilger Ropers
  11. Thomas F Wienker
  12. Christoph Hübner
  13. Thomas Langer
  14. Angela M Kaindl
(2016)
Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation
eLife 5:e16078.
https://doi.org/10.7554/eLife.16078

Share this article

https://doi.org/10.7554/eLife.16078

Further reading

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Rashmi Sukumaran, Achuthsankar S Nair, Moinak Banerjee
    Research Article

    Burden of stroke differs by region, which could be attributed to differences in comorbid conditions and ethnicity. Genomewide variation acts as a proxy marker for ethnicity, and comorbid conditions. We present an integrated approach to understand this variation by considering prevalence and mortality rates of stroke and its comorbid risk for 204 countries from 2009 to 2019, and Genome-wide association studies (GWAS) risk variant for all these conditions. Global and regional trend analysis of rates using linear regression, correlation, and proportion analysis, signifies ethnogeographic differences. Interestingly, the comorbid conditions that act as risk drivers for stroke differed by regions, with more of metabolic risk in America and Europe, in contrast to high systolic blood pressure in Asian and African regions. GWAS risk loci of stroke and its comorbid conditions indicate distinct population stratification for each of these conditions, signifying for population-specific risk. Unique and shared genetic risk variants for stroke, and its comorbid and followed up with ethnic-specific variation can help in determining regional risk drivers for stroke. Unique ethnic-specific risk variants and their distinct patterns of linkage disequilibrium further uncover the drivers for phenotypic variation. Therefore, identifying population- and comorbidity-specific risk variants might help in defining the threshold for risk, and aid in developing population-specific prevention strategies for stroke.

    1. Genetics and Genomics
    Wenjing Liu, Shujin Li ... Xianjun Zhu
    Research Article

    Familial exudative vitreoretinopathy (FEVR) is a severe genetic disorder characterized by incomplete vascularization of the peripheral retina and associated symptoms that can lead to vision loss. However, the underlying genetic causes of approximately 50% of FEVR cases remain unknown. Here, we report two heterozygous variants in calcyphosine-like gene (CAPSL) that is associated with FEVR. Both variants exhibited compromised CAPSL protein expression. Vascular endothelial cell (EC)-specific inactivation of Capsl resulted in delayed radial/vertical vascular progression, compromised endothelial proliferation/migration, recapitulating the human FEVR phenotypes. CAPSL-depleted human retinal microvascular endothelial cells (HRECs) exhibited impaired tube formation, decreased cell proliferation, disrupted cell polarity establishment, and filopodia/lamellipodia formation, as well as disrupted collective cell migration. Transcriptomic and proteomic profiling revealed that CAPSL abolition inhibited the MYC signaling axis, in which the expression of core MYC targeted genes were profoundly decreased. Furthermore, a combined analysis of CAPSL-depleted HRECs and c-MYC-depleted human umbilical vein endothelial cells uncovered similar transcription patterns. Collectively, this study reports a novel FEVR-associated candidate gene, CAPSL, which provides valuable information for genetic counseling of FEVR. This study also reveals that compromised CAPSL function may cause FEVR through MYC axis, shedding light on the potential involvement of MYC signaling in the pathogenesis of FEVR.