Dopaminergic neurons write and update memories with cell-type-specific rules

  1. Yoshinori Aso  Is a corresponding author
  2. Gerald M Rubin  Is a corresponding author
  1. Janelia Research Campus, Howard Hughes Medical Institute, United States

Abstract

Associative learning is thought to involve parallel and distributed mechanisms of memory formation and storage. In Drosophila, the mushroom body (MB) is the major site of associative odor memory formation. Previously we described the anatomy of the adult MB and defined 20 types of dopaminergic neurons (DANs) that each innervate distinct MB compartments (Aso et al., 2014a; Aso et al., 2014b). Here we compare the properties of memories formed by optogenetic activation of individual DAN cell types. We found extensive differences in training requirements for memory formation, decay dynamics, storage capacity and flexibility to learn new associations. Even a single DAN cell type can either write or reduce an aversive memory, or write an appetitive memory, depending on when it is activated relative to odor delivery. Our results show that different learning rules are executed in seemingly parallel memory systems, providing multiple distinct circuit-based strategies to predict future events from past experiences.

Article and author information

Author details

  1. Yoshinori Aso

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    asoy@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2939-1688
  2. Gerald M Rubin

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    rubing@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.

Funding

Howard Hughes Medical Institute

  • Yoshinori Aso
  • Gerald M Rubin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Aso & Rubin

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yoshinori Aso
  2. Gerald M Rubin
(2016)
Dopaminergic neurons write and update memories with cell-type-specific rules
eLife 5:e16135.
https://doi.org/10.7554/eLife.16135

Share this article

https://doi.org/10.7554/eLife.16135

Further reading

    1. Neuroscience
    Yoshinori Aso, Divya Sitaraman ... Gerald M Rubin
    Research Article

    Animals discriminate stimuli, learn their predictive value and use this knowledge to modify their behavior. In Drosophila, the mushroom body (MB) plays a key role in these processes. Sensory stimuli are sparsely represented by ∼2000 Kenyon cells, which converge onto 34 output neurons (MBONs) of 21 types. We studied the role of MBONs in several associative learning tasks and in sleep regulation, revealing the extent to which information flow is segregated into distinct channels and suggesting possible roles for the multi-layered MBON network. We also show that optogenetic activation of MBONs can, depending on cell type, induce repulsion or attraction in flies. The behavioral effects of MBON perturbation are combinatorial, suggesting that the MBON ensemble collectively represents valence. We propose that local, stimulus-specific dopaminergic modulation selectively alters the balance within the MBON network for those stimuli. Our results suggest that valence encoded by the MBON ensemble biases memory-based action selection.

    1. Neuroscience
    Yue Li, Qinyao Sun ... Jiaojian Wang
    Research Article

    Disentangling the evolution mysteries of the human brain has always been an imperative endeavor in neuroscience. Although many previous comparative studies revealed genetic, brain structural and connectivity distinctness between human and other nonhuman primates, the brain evolutional mechanism is still largely unclear. Here, we proposed to embed the brain anatomy of human and macaque in the developmental chronological axis to construct cross-species predictive model to quantitatively characterize brain evolution using two large public human and macaque datasets. We observed that applying the trained models within-species could well predict the chronological age. Interestingly, we found the model trained in macaque showed a higher accuracy in predicting the chronological age of human than the model trained in human in predicting the chronological age of macaque. The cross-application of the trained model introduced an individual brain cross-species age gap index to quantify the cross-species discrepancy along the temporal axis of brain development and was found to be associated with the behavioral performance in visual acuity test and picture vocabulary test in human. Taken together, our study situated the cross-species brain development along the chronological axis, which highlighted the disproportionately anatomical development in human brain to extend our understanding of the potential evolutionary effects.