Origins of the 2009 H1N1 influenza pandemic in swine in Mexico

  1. Ignacio Mena
  2. Martha I Nelson
  3. Francisco Quezada-Monroy
  4. Jayeeta Dutta
  5. Refugio Cortes-Fernández
  6. J Horacio Lara-Puente
  7. Felipa Castro-Peralta
  8. Luis F Cunha
  9. Nídia Sequeira Trovão
  10. Bernardo Lozano-Dubernard
  11. Andrew Rambaut
  12. Harm van Bakel
  13. Adolfo García-Sastre  Is a corresponding author
  1. Icahn School of Medicine at Mount Sinai, United States
  2. National Institutes of Health, United States
  3. Laboratorio Avi-Mex, Mexico

Abstract

Asia is considered an important source of influenza A virus (IAV) pandemics, owing to large, diverse viral reservoirs in poultry and swine. However, the zoonotic origins of the 2009 A/H1N1 influenza pandemic virus (pdmH1N1) remain unclear, due to conflicting evidence from swine and humans. There is strong evidence that the first human outbreak of pdmH1N1 occurred in Mexico in early 2009. However, no related swine viruses have been detected in Mexico or any part of the Americas, and to date the most closely related ancestor viruses were identified in Asian swine. Here, we use 58 new whole-genome sequences from IAVs collected in Mexican swine to establish that the swine virus responsible for the 2009 pandemic evolved in central Mexico. This finding highlights how the 2009 pandemic arose from a region not considered a pandemic risk, owing to an expansion of IAV diversity in swine resulting from long-distance live swine trade.

Article and author information

Author details

  1. Ignacio Mena

    Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Martha I Nelson

    Division of International Epidemiology and Population Studies,Fogarty International Center, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Francisco Quezada-Monroy

    Laboratorio Avi-Mex, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  4. Jayeeta Dutta

    Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Refugio Cortes-Fernández

    Laboratorio Avi-Mex, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  6. J Horacio Lara-Puente

    Laboratorio Avi-Mex, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  7. Felipa Castro-Peralta

    Laboratorio Avi-Mex, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  8. Luis F Cunha

    Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nídia Sequeira Trovão

    Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Bernardo Lozano-Dubernard

    Laboratorio Avi-Mex, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  11. Andrew Rambaut

    Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Harm van Bakel

    Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Adolfo García-Sastre

    Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States
    For correspondence
    adolfo.garcia-sastre@mssm.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Richard A Neher, Max Planck Institute for Developmental Biology, Germany

Publication history

  1. Received: April 8, 2016
  2. Accepted: June 13, 2016
  3. Accepted Manuscript published: June 28, 2016 (version 1)
  4. Version of Record published: July 22, 2016 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 11,769
    Page views
  • 1,287
    Downloads
  • 136
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ignacio Mena
  2. Martha I Nelson
  3. Francisco Quezada-Monroy
  4. Jayeeta Dutta
  5. Refugio Cortes-Fernández
  6. J Horacio Lara-Puente
  7. Felipa Castro-Peralta
  8. Luis F Cunha
  9. Nídia Sequeira Trovão
  10. Bernardo Lozano-Dubernard
  11. Andrew Rambaut
  12. Harm van Bakel
  13. Adolfo García-Sastre
(2016)
Origins of the 2009 H1N1 influenza pandemic in swine in Mexico
eLife 5:e16777.
https://doi.org/10.7554/eLife.16777

Further reading

    1. Epidemiology and Global Health
    Shaun Truelove et al.
    Research Article Updated

    In Spring 2021, the highly transmissible SARS-CoV-2 Delta variant began to cause increases in cases, hospitalizations, and deaths in parts of the United States. At the time, with slowed vaccination uptake, this novel variant was expected to increase the risk of pandemic resurgence in the US in summer and fall 2021. As part of the COVID-19 Scenario Modeling Hub, an ensemble of nine mechanistic models produced 6-month scenario projections for July–December 2021 for the United States. These projections estimated substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant, projected to occur across most of the US, coinciding with school and business reopening. The scenarios revealed that reaching higher vaccine coverage in July–December 2021 reduced the size and duration of the projected resurgence substantially, with the expected impacts was largely concentrated in a subset of states with lower vaccination coverage. Despite accurate projection of COVID-19 surges occurring and timing, the magnitude was substantially underestimated 2021 by the models compared with the of the reported cases, hospitalizations, and deaths occurring during July–December, highlighting the continued challenges to predict the evolving COVID-19 pandemic. Vaccination uptake remains critical to limiting transmission and disease, particularly in states with lower vaccination coverage. Higher vaccination goals at the onset of the surge of the new variant were estimated to avert over 1.5 million cases and 21,000 deaths, although may have had even greater impacts, considering the underestimated resurgence magnitude from the model.

    1. Epidemiology and Global Health
    Yochai Edlitz, Eran Segal
    Research Article

    Background: Type 2 diabetes (T2D) accounts for ~90% of all cases of diabetes, resulting in an estimated 6.7 million deaths in 2021, according to the International Diabetes Federation (IDF). Early detection of patients with high risk of developing T2D can reduce the incidence of the disease through a change in lifestyle, diet, or medication. Since populations of lower socio-demographic status are more susceptible to T2D and might have limited resources or access to sophisticated computational resources, there is a need for accurate yet accessible prediction models.

    Methods: In this study, we analyzed data from 44,709 non-diabetic U.K. Biobank participants aged 40-69, predicting the risk of T2D onset within a selected timeframe (mean of 7.3 years with a standard deviation of 2.3 years). We started with 798 features that we identified as potential predictors for T2D onset. We first analyzed the data using gradient boosting decision trees, survival analysis, and logistic regression methods. We devised one non-laboratory model accessible to the general population and one more precise yet simple model that utilizes laboratory tests. We simplified both models to an accessible scorecard form, tested the models on normoglycemic and prediabetes sub cohorts, and compared the results to the results of the general cohort. We established the non-laboratory model using the following covariates: sex, age, weight, height, waist size, hip circumference, waist-to-hip Ratio (WHR), and Body-Mass Index (BMI). For the laboratory model, we used age and sex together with four common blood tests: HDL (high-density lipoprotein), gamma-glutamyl transferase, glycated hemoglobin, and triglycerides. As an external validation dataset, we used the electronic medical record database of Clalit Health Services.

    Results: The non-laboratory scorecard model achieved an Area Under the Receiver Operating Curve (auROC) of 0.81 (0.77-0.84 95% Confidence Interval (CI)) and an odds ratio (OR) between the upper and fifth prevalence deciles of 17.2 (5-66 95% CI). Using this model, we classified three risk groups, a group with 1% (0.8-1%), 5% (3-6%), and the third group with a 9% (7-12%) risk of developing T2D. We further analyzed the contribution of the laboratory-based model and devised a blood-test model based on age, sex and the four common blood tests noted above. In this scorecard model, we included age, sex, glycated hemoglobin (HbA1c%), gamma glutamyl-transferase, triglycerides, and HDL cholesterol. Using this model, we achieved an auROC of 0.87 (0.85-0.90 95% CI) and a deciles' OR of x48 (12-109 95% CI). Using this model, we classified the cohort into four risk groups with the following risks: 0.5% (0.4%-7%); 3% (2-4%); 10% (8-12%) and a high-risk group of 23% (10-37%) of developing T2D. When applying the blood tests model using the external validation cohort (Clalit), we achieved an auROC of 0.75 (0.74-0.75 95% CI). We analyzed several additional comprehensive models, which included genotyping data and other environmental factors. We found that these models did not provide cost-efficient benefits over the four blood test model. The commonly used German Diabetes Risk Score (GDRS) and Finnish Diabetes Risk Score (FINDRISC) models, trained using our data, achieved an auROC of 0.73 (0.69-0.76) and 0.66 (0.62-0.70), respectively, inferior to the results achieved by the four blood test model and by the Anthropometry models.

    Conclusions: The four blood tests and anthropometric models outperformed the commonly used non-laboratory models, the FINDRISC and the GDRS. We suggest that our models be used as tools for decision-makers to assess populations at elevated T2D risk and thus improve medical strategies. These models might also provide a personal catalyst for changing lifestyle, diet, or medication modifications to lower the risk of T2D onset.

    Funding: No Funders. The funders had no role in study design, data collection, interpretation, or the decision to submit the work for publication.