Abstract

Asia is considered an important source of influenza A virus (IAV) pandemics, owing to large, diverse viral reservoirs in poultry and swine. However, the zoonotic origins of the 2009 A/H1N1 influenza pandemic virus (pdmH1N1) remain unclear, due to conflicting evidence from swine and humans. There is strong evidence that the first human outbreak of pdmH1N1 occurred in Mexico in early 2009. However, no related swine viruses have been detected in Mexico or any part of the Americas, and to date the most closely related ancestor viruses were identified in Asian swine. Here, we use 58 new whole-genome sequences from IAVs collected in Mexican swine to establish that the swine virus responsible for the 2009 pandemic evolved in central Mexico. This finding highlights how the 2009 pandemic arose from a region not considered a pandemic risk, owing to an expansion of IAV diversity in swine resulting from long-distance live swine trade.

Article and author information

Author details

  1. Ignacio Mena

    Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Martha I Nelson

    Division of International Epidemiology and Population Studies,Fogarty International Center, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Francisco Quezada-Monroy

    Laboratorio Avi-Mex, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  4. Jayeeta Dutta

    Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Refugio Cortes-Fernández

    Laboratorio Avi-Mex, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  6. J Horacio Lara-Puente

    Laboratorio Avi-Mex, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  7. Felipa Castro-Peralta

    Laboratorio Avi-Mex, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  8. Luis F Cunha

    Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nídia Sequeira Trovão

    Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Bernardo Lozano-Dubernard

    Laboratorio Avi-Mex, Mexico City, Mexico
    Competing interests
    The authors declare that no competing interests exist.
  11. Andrew Rambaut

    Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Harm van Bakel

    Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Adolfo García-Sastre

    Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, United States
    For correspondence
    adolfo.garcia-sastre@mssm.edu
    Competing interests
    The authors declare that no competing interests exist.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 14,085
    views
  • 1,508
    downloads
  • 255
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ignacio Mena
  2. Martha I Nelson
  3. Francisco Quezada-Monroy
  4. Jayeeta Dutta
  5. Refugio Cortes-Fernández
  6. J Horacio Lara-Puente
  7. Felipa Castro-Peralta
  8. Luis F Cunha
  9. Nídia Sequeira Trovão
  10. Bernardo Lozano-Dubernard
  11. Andrew Rambaut
  12. Harm van Bakel
  13. Adolfo García-Sastre
(2016)
Origins of the 2009 H1N1 influenza pandemic in swine in Mexico
eLife 5:e16777.
https://doi.org/10.7554/eLife.16777

Share this article

https://doi.org/10.7554/eLife.16777

Further reading

    1. Epidemiology and Global Health
    Marina Padilha, Victor Nahuel Keller ... Gilberto Kac
    Research Article

    Background: The role of circulating metabolites on child development is understudied. We investigated associations between children's serum metabolome and early childhood development (ECD).

    Methods: Untargeted metabolomics was performed on serum samples of 5,004 children aged 6-59 months, a subset of participants from the Brazilian National Survey on Child Nutrition (ENANI-2019). ECD was assessed using the Survey of Well-being of Young Children's milestones questionnaire. The graded response model was used to estimate developmental age. Developmental quotient (DQ) was calculated as the developmental age divided by chronological age. Partial least square regression selected metabolites with a variable importance projection ≥ 1. The interaction between significant metabolites and the child's age was tested.

    Results: Twenty-eight top-ranked metabolites were included in linear regression models adjusted for the child's nutritional status, diet quality, and infant age. Cresol sulfate (β = -0.07; adjusted-p < 0.001), hippuric acid (β = -0.06; adjusted-p < 0.001), phenylacetylglutamine (β = -0.06; adjusted-p < 0.001), and trimethylamine-N-oxide (β = -0.05; adjusted-p = 0.002) showed inverse associations with DQ. We observed opposite directions in the association of DQ for creatinine (for children aged -1 SD: β = -0.05; p =0.01; +1 SD: β = 0.05; p =0.02) and methylhistidine (-1 SD: β = - 0.04; p =0.04; +1 SD: β = 0.04; p =0.03).

    Conclusion: Serum biomarkers, including dietary and microbial-derived metabolites involved in the gut-brain axis, may potentially be used to track children at risk for developmental delays.

    Funding: Supported by the Brazilian Ministry of Health and the Brazilian National Research Council.

    1. Epidemiology and Global Health
    Riccardo Spott, Mathias W Pletz ... Christian Brandt
    Research Article

    Given the rapid cross-country spread of SARS-CoV-2 and the resulting difficulty in tracking lineage spread, we investigated the potential of combining mobile service data and fine-granular metadata (such as postal codes and genomic data) to advance integrated genomic surveillance of the pandemic in the federal state of Thuringia, Germany. We sequenced over 6500 SARS-CoV-2 Alpha genomes (B.1.1.7) across 7 months within Thuringia while collecting patients’ isolation dates and postal codes. Our dataset is complemented by over 66,000 publicly available German Alpha genomes and mobile service data for Thuringia. We identified the existence and spread of nine persistent mutation variants within the Alpha lineage, seven of which formed separate phylogenetic clusters with different spreading patterns in Thuringia. The remaining two are subclusters. Mobile service data can indicate these clusters’ spread and highlight a potential sampling bias, especially of low-prevalence variants. Thereby, mobile service data can be used either retrospectively to assess surveillance coverage and efficiency from already collected data or to actively guide part of a surveillance sampling process to districts where these variants are expected to emerge. The latter concept was successfully implemented as a proof-of-concept for a mobility-guided sampling strategy in response to the surveillance of Omicron sublineage BQ.1.1. The combination of mobile service data and SARS-CoV-2 surveillance by genome sequencing is a valuable tool for more targeted and responsive surveillance.