Boundary cells restrict dystroglycan trafficking to control basement membrane sliding during tissue remodeling

  1. Shelly TH McClatchey
  2. Zheng Wang
  3. Lara M Linden
  4. Eric L Hastie
  5. Lin Wang
  6. Wanqing Shen
  7. Alan Chen
  8. Qiuyi Chi
  9. David R Sherwood  Is a corresponding author
  1. Duke University, United States
  2. Huazhong University of Science and Technology, China

Abstract

Epithelial cells and their underlying basement membranes (BMs) slide along each other to renew epithelia, shape organs, and enlarge BM openings. How BM sliding is controlled, however, is poorly understood. Using genetic and live cell imaging approaches during uterine-vulval attachment in C. elegans, we have discovered that the invasive uterine anchor cell activates Notch signaling in neighboring uterine cells at the boundary of the BM gap through which it invades to promote BM sliding. Through an RNAi screen, we found that Notch activation upregulates expression of ctg-1, which encodes a Sec14-GOLD protein and member of the Sec14 phosphatidylinositol-transfer protein superfamily that is implicated in vesicle trafficking. Through photobleaching, targeted knockdown, and cell-specific rescue, our results suggest that CTG-1 restricts BM adhesion receptor DGN-1 (dystroglycan) trafficking to the cell-BM interface, which promotes BM sliding. Together, these studies reveal a new morphogenetic signaling pathway that controls BM sliding to remodel tissues.

Article and author information

Author details

  1. Shelly TH McClatchey

    Department of Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Zheng Wang

    Center for Tissue Engineering and Regenerative Medicine, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Lara M Linden

    Department of Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Eric L Hastie

    Department of Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lin Wang

    Center for Tissue Engineering and Regenerative Medicine, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Wanqing Shen

    Center for Tissue Engineering and Regenerative Medicine, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Alan Chen

    Department of Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Qiuyi Chi

    Department of Biology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. David R Sherwood

    Department of Biology, Duke University, Durham, United States
    For correspondence
    david.sherwood@duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2245-2334

Funding

National Institute of General Medical Sciences (GM079320)

  • David R Sherwood

National Institute of General Medical Sciences (GM100083)

  • David R Sherwood

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, McClatchey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,248
    views
  • 314
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shelly TH McClatchey
  2. Zheng Wang
  3. Lara M Linden
  4. Eric L Hastie
  5. Lin Wang
  6. Wanqing Shen
  7. Alan Chen
  8. Qiuyi Chi
  9. David R Sherwood
(2016)
Boundary cells restrict dystroglycan trafficking to control basement membrane sliding during tissue remodeling
eLife 5:e17218.
https://doi.org/10.7554/eLife.17218

Share this article

https://doi.org/10.7554/eLife.17218

Further reading

    1. Cell Biology
    Yajun Zhai, Peiyi Liu ... Gongzheng Hu
    Research Article

    Discovering new strategies to combat the multidrug-resistant bacteria constitutes a major medical challenge of our time. Previously, artesunate (AS) has been reported to exert antibacterial enhancement activity in combination with β-lactam antibiotics via inhibition of the efflux pump AcrB. However, combination of AS and colistin (COL) revealed a weak synergistic effect against a limited number of strains, and few studies have further explored its possible mechanism of synergistic action. In this article, we found that AS and EDTA could strikingly enhance the antibacterial effects of COL against mcr-1- and mcr-1+ Salmonella strains either in vitro or in vivo, when used in triple combination. The excellent bacteriostatic effect was primarily related to the increased cell membrane damage, accumulation of toxic compounds and inhibition of MCR-1. The potential binding sites of AS to MCR-1 (THR283, SER284, and TYR287) were critical for its inhibition of MCR-1 activity. Additionally, we also demonstrated that the CheA of chemosensory system and virulence-related protein SpvD were critical for the bacteriostatic synergistic effects of the triple combination. Selectively targeting CheA, SpvD, or MCR using the natural compound AS could be further investigated as an attractive strategy for the treatment of Salmonella infection. Collectively, our work opens new avenues toward the potentiation of COL and reveals an alternative drug combination strategy to overcome COL-resistant bacterial infections.

    1. Cell Biology
    Tamás Visnovitz, Dorina Lenzinger ... Edit I Buzas
    Short Report

    Recent studies showed an unexpected complexity of extracellular vesicle (EV) biogenesis pathways. We previously found evidence that human colorectal cancer cells in vivo release large multivesicular body-like structures en bloc. Here, we tested whether this large EV type is unique to colorectal cancer cells. We found that all cell types we studied (including different cell lines and cells in their original tissue environment) released multivesicular large EVs (MV-lEVs). We also demonstrated that upon spontaneous rupture of the limiting membrane of the MV-lEVs, their intraluminal vesicles (ILVs) escaped to the extracellular environment by a ‘torn bag mechanism’. We proved that the MV-lEVs were released by ectocytosis of amphisomes (hence, we termed them amphiectosomes). Both ILVs of amphiectosomes and small EVs separated from conditioned media were either exclusively CD63 or LC3B positive. According to our model, upon fusion of multivesicular bodies with autophagosomes, fragments of the autophagosomal inner membrane curl up to form LC3B positive ILVs of amphisomes, while CD63 positive small EVs are of multivesicular body origin. Our data suggest a novel common release mechanism for small EVs, distinct from the exocytosis of multivesicular bodies or amphisomes, as well as the small ectosome release pathway.