1. Neuroscience
Download icon

Human Intracranial recordings link suppressed transients rather than 'filling-in' to perceptual continuity across blinks

  1. Tal Golan
  2. Ido Davidesco
  3. Meir Meshulam
  4. David M Groppe
  5. Pierre Mégevand
  6. Erin M Yeagle
  7. Matthew S Goldfinger
  8. Michal Harel
  9. Lucia Melloni
  10. Charles E Schroeder
  11. Leon Y Deouell
  12. Ashesh D Mehta
  13. Rafael Malach  Is a corresponding author
  1. The Hebrew University of Jerusalem, Israel
  2. New York University, United States
  3. Weizmann Institute of Science, Israel
  4. Hofstra Northwell School of Medicine, United States
  5. Columbia University College of Physicians and Surgeons, United States
  6. The Weizmann Institute of Science, Israel
Research Article
  • Cited 9
  • Views 1,319
  • Annotations
Cite this article as: eLife 2016;5:e17243 doi: 10.7554/eLife.17243

Abstract

We hardly notice our eye blinks, yet an externally generated retinal interruption of a similar duration is perceptually salient. We examined the neural correlates of this perceptual distinction using intracranially measured ECoG signals from human visual cortex in 14 patients. In early visual areas (V1 and V2), the disappearance of the stimulus due to either invisible blinks or salient blank video frames ('gaps') led to a similar drop in activity level, followed by a positive overshoot beyond baseline, triggered by stimulus reappearance. Ascending the visual hierarchy, the reappearance-related overshoot gradually subsided for blinks but not for gaps. By contrast, the disappearance-related drop did not follow the perceptual distinction - it was actually slightly more pronounced for blinks than for gaps. These findings suggest that blinks' limited visibility compared with gaps is correlated with suppression of blink-related visual activity transients, rather than with 'filling-in' of the occluded content during blinks.

Article and author information

Author details

  1. Tal Golan

    Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7940-7473
  2. Ido Davidesco

    Department of Psychology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Meir Meshulam

    Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. David M Groppe

    Deptartment of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Pierre Mégevand

    Deptartment of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0427-547X
  6. Erin M Yeagle

    Deptartment of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Matthew S Goldfinger

    Deptartment of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michal Harel

    Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  9. Lucia Melloni

    Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Charles E Schroeder

    Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Leon Y Deouell

    Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  12. Ashesh D Mehta

    Deptartment of Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7293-1101
  13. Rafael Malach

    Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
    For correspondence
    rafi.malach@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2869-680X

Funding

Helen and Martin Kimmel Award (7204760501)

  • Rafael Malach

Israel Science Foundation (I-CORE, 7111000508)

  • Rafael Malach

United States-Israel Binational Science Foundation (2013070)

  • Leon Y Deouell

Israel Science Foundation (1902_14)

  • Leon Y Deouell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All patients gave fully informed consent, including consent to publish, according to NIH guidelines, as monitored by the institutional review board at the Feinstein Institute for Medical Research, in accordance with the Declaration of Helsinki. Data was obtained as part of protocol number 07-125. Patients had the opportunity to consent prior to electrode implantation and were informed that they may choose to decline or later withdraw from the study without affecting their clinical care. Consent includes agreement to participate with studies of cognitive and sensorimotor processes and publication of any deidentified data obtained. Risks include tedium and potential breach of medical information and are minimized by giving ample breaks and implementation of protocols to deidentify data close to the time of recording. Benefits to the subject include increased monitoring of the electrocorticogram and involvement of research methods to help localize electrodes with respect to preoperative MRI.

Reviewing Editor

  1. Tatiana Pasternak, University of Rochester, United States

Publication history

  1. Received: April 26, 2016
  2. Accepted: September 24, 2016
  3. Accepted Manuscript published: September 29, 2016 (version 1)
  4. Version of Record published: November 9, 2016 (version 2)

Copyright

© 2016, Golan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,319
    Page views
  • 278
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Immunology and Inflammation
    2. Neuroscience
    Xiao Yang et al.
    Research Article
    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Stephanie C Gantz et al.
    Research Article