Abstract

Experience-dependent reorganisation of functional maps in the cerebral cortex is well described in the primary sensory cortices. However, there is relatively little evidence for such cortical reorganisation over the short-term. Using human somatosensory cortex as a model, we investigated the effects of a 24-hour gluing manipulation in which the right index and right middle fingers (digits 2 & 3) were adjoined with surgical glue. Somatotopic representations, assessed with two 7 tesla fMRI protocols, revealed rapid off-target reorganisation in the non-manipulated fingers following gluing, with the representation of the ring finger (digit 4) shifted towards the little finger (digit 5) and away from the middle finger (digit 3). These shifts were also evident in two behavioural tasks conducted in an independent cohort, showing reduced sensitivity for discriminating the temporal order of stimuli to the ring and little fingers, and increased substitution errors across this pair on a speeded reaction time task.

Article and author information

Author details

  1. James Kolasinski

    Oxford Centre for fMRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    For correspondence
    james.kolasinski@ndcn.ox.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1599-6440
  2. Tamar R Makin

    Oxford Centre for fMRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5816-8979
  3. John Patrick Logan

    Oxford Centre for fMRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4469-2948
  4. Saad Jbabdi

    Oxford Centre for fMRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  5. Stuart Clare

    Oxford Centre for fMRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. Charlotte J Stagg

    Oxford Centre for fMRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  7. Heidi Johansen-Berg

    Oxford Centre for fMRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    Heidi Johansen-Berg, Reviewing editor, eLife.

Funding

University College, Oxford

  • James Kolasinski

Wellcome (104128/Z/14/Z)

  • Tamar R Makin

Wellcome (102584/Z/13/Z)

  • Charlotte J Stagg

Medical Research Council (MR/L009013/1)

  • Saad Jbabdi

Wellcome (110027/Z/15/Z)

  • Heidi Johansen-Berg

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All data were acquired in accordance with local central university research ethics committee approval (University of Oxford MSD-IDREC-C2-2013-05). Eighteen participants were recruited, each providing written informed consent to take part in this study, and for the results of this study to be published.

Copyright

© 2016, Kolasinski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,691
    views
  • 498
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. James Kolasinski
  2. Tamar R Makin
  3. John Patrick Logan
  4. Saad Jbabdi
  5. Stuart Clare
  6. Charlotte J Stagg
  7. Heidi Johansen-Berg
(2016)
Perceptually relevant remapping of human somatotopy in 24 hours
eLife 5:e17280.
https://doi.org/10.7554/eLife.17280

Share this article

https://doi.org/10.7554/eLife.17280

Further reading

    1. Neuroscience
    Marine Schimel, Ta-Chu Kao, Guillaume Hennequin
    Research Article

    During delayed ballistic reaches, motor areas consistently display movement-specific activity patterns prior to movement onset. It is unclear why these patterns arise: while they have been proposed to seed an initial neural state from which the movement unfolds, recent experiments have uncovered the presence and necessity of ongoing inputs during movement, which may lessen the need for careful initialization. Here, we modeled the motor cortex as an input-driven dynamical system, and we asked what the optimal way to control this system to perform fast delayed reaches is. We find that delay-period inputs consistently arise in an optimally controlled model of M1. By studying a variety of network architectures, we could dissect and predict the situations in which it is beneficial for a network to prepare. Finally, we show that optimal input-driven control of neural dynamics gives rise to multiple phases of preparation during reach sequences, providing a novel explanation for experimentally observed features of monkey M1 activity in double reaching.

    1. Neuroscience
    Jing Jun Wong, Alessandro Bongioanni ... Bolton KH Chau
    Research Article

    Humans make irrational decisions in the presence of irrelevant distractor options. There is little consensus on whether decision making is facilitated or impaired by the presence of a highly rewarding distractor, or whether the distractor effect operates at the level of options’ component attributes rather than at the level of their overall value. To reconcile different claims, we argue that it is important to consider the diversity of people’s styles of decision making and whether choice attributes are combined in an additive or multiplicative way. Employing a multi-laboratory dataset investigating the same experimental paradigm, we demonstrated that people used a mix of both approaches and the extent to which approach was used varied across individuals. Critically, we identified that this variability was correlated with the distractor effect during decision making. Individuals who tended to use a multiplicative approach to compute value, showed a positive distractor effect. In contrast, a negative distractor effect (divisive normalisation) was prominent in individuals tending towards an additive approach. Findings suggest that the distractor effect is related to how value is constructed, which in turn may be influenced by task and subject specificities. This concurs with recent behavioural and neuroscience findings that multiple distractor effects co-exist.