Tim29 is a novel subunit of the human TIM22 translocase and is involved in complex assembly and stability

  1. Yilin Kang
  2. Michael James Baker
  3. Michael Liem
  4. Jade Louber
  5. Matthew McKenzie
  6. Ishara Atukorala
  7. Ching-Seng Ang
  8. Shivakumar Keerthikumar
  9. Suresh Mathivanan
  10. Diana Stojanovski  Is a corresponding author
  1. The University of Melbourne, Australia
  2. La Trobe University, Australia
  3. Hudson Institute of Medical Research, Australia

Abstract

The TIM22 complex mediates the import of hydrophobic carrier proteins into the mitochondrial inner membrane. While the TIM22 machinery has been well characterised in yeast, the human complex remains poorly characterised. Here, we identify Tim29 (C19orf52) as a novel, metazoan-specific subunit of the human TIM22 complex. The protein is integrated into the mitochondrial inner membrane with it's C-terminus exposed to the intermembrane space. Tim29 is required for the stability of the TIM22 complex and functions in the assembly of the hTim22. Furthermore, Tim29 contacts the Translocase of the Outer Mitochondrial Membrane, TOM complex, enabling a mechanism for transport of hydrophobic carrier substrates across the aqueous intermembrane space. Identification of Tim29 highlights the significance of analysing mitochondrial import systems across phylogenetic boundaries, which can reveal novel components and mechanisms in higher organisms.

Article and author information

Author details

  1. Yilin Kang

    Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Michael James Baker

    Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Liem

    Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Jade Louber

    Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Matthew McKenzie

    Centre for Genetic Diseases, Hudson Institute of Medical Research, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Ishara Atukorala

    Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Ching-Seng Ang

    The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Shivakumar Keerthikumar

    Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Suresh Mathivanan

    Department of Biochemistry and Genetics, La Trobe University, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Diana Stojanovski

    Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia
    For correspondence
    d.stojanovski@unimelb.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0199-3222

Funding

The authors declare that there was no funding for this work

Copyright

© 2016, Kang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,784
    views
  • 588
    downloads
  • 77
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yilin Kang
  2. Michael James Baker
  3. Michael Liem
  4. Jade Louber
  5. Matthew McKenzie
  6. Ishara Atukorala
  7. Ching-Seng Ang
  8. Shivakumar Keerthikumar
  9. Suresh Mathivanan
  10. Diana Stojanovski
(2016)
Tim29 is a novel subunit of the human TIM22 translocase and is involved in complex assembly and stability
eLife 5:e17463.
https://doi.org/10.7554/eLife.17463

Share this article

https://doi.org/10.7554/eLife.17463

Further reading

    1. Biochemistry and Chemical Biology
    Jianheng Fox Liu, Ben R Hawley ... Samie R Jaffrey
    Tools and Resources

    N 6,2’-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5’ isoforms. Thus, gene-level annotations cannot capture the diversity of m6Am modification in the transcriptome. Here, we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5’ isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.