Structures of TorsinA and its disease-mutant complexed with an activator reveal the molecular basis for primary dystonia

  1. F Esra Demircioglu
  2. Brian A Sosa
  3. Jessica Ingram
  4. Hidde L Ploegh
  5. Thomas U Schwartz  Is a corresponding author
  1. Massachusetts Institute of Technology, United States
  2. Whitehead Institute for Biomedical Research, United States

Abstract

The most common cause of early onset primary dystonia, a neuromuscular disease, is a glutamate deletion (ΔE) at position 302/303 of TorsinA, a AAA+ ATPase that resides in the endoplasmic reticulum. While the function of TorsinA remains elusive, the ΔE mutation is known to diminish binding of two TorsinA ATPase activators: lamina-associated protein 1 (LAP1) and its paralog, luminal domain like LAP1 (LULL1). Using a nanobody as a crystallization chaperone, we obtained a 1.4 Å crystal structure of human TorsinA in complex with LULL1. This nanobody likewise stabilized the weakened TorsinAE-LULL1 interaction, which enabled us to solve its structure at 1.4 Å also. A comparison of these structures shows, in atomic detail, the subtle differences in activator interactions that separate the healthy from the diseased state. This information may provide a structural platform for drug development, as a small molecule that rescues TorsinAΔE could serve as a cure for primary dystonia.

Article and author information

Author details

  1. F Esra Demircioglu

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    F Esra Demircioglu, Filed a provisional patent application protecting the use of the crystal structures (U.S.P.T.O. No. 62/330,683).
  2. Brian A Sosa

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    Brian A Sosa, Filed a provisional patent application protecting the use of the crystal structures (U.S.P.T.O. No. 62/330,683).
  3. Jessica Ingram

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Hidde L Ploegh

    Whitehead Institute for Biomedical Research, Cambridge, United States
    Competing interests
    No competing interests declared.
  5. Thomas U Schwartz

    Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    tus@mit.edu
    Competing interests
    Thomas U Schwartz, Filed a provisional patent application protecting the use of the crystal structures (U.S.P.T.O. No. 62/330,683).
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8012-1512

Funding

Foundation for Dystonia Research

  • Thomas U Schwartz

National Institutes of Health

  • Thomas U Schwartz

National Institutes of Health

  • Hidde L Ploegh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2016, Demircioglu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,204
    views
  • 619
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. F Esra Demircioglu
  2. Brian A Sosa
  3. Jessica Ingram
  4. Hidde L Ploegh
  5. Thomas U Schwartz
(2016)
Structures of TorsinA and its disease-mutant complexed with an activator reveal the molecular basis for primary dystonia
eLife 5:e17983.
https://doi.org/10.7554/eLife.17983

Share this article

https://doi.org/10.7554/eLife.17983

Further reading

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.