Cyclin Kinase-independent role of p21CDKN1A in the promotion of nascent DNA elongation in unstressed cells

  1. Sabrina F Mansilla
  2. Agustina P Bertolin
  3. Valérie Bergoglio
  4. Marie-Jeanne Pillaire
  5. Marina A González Besteiro
  6. Carlos Luzzani
  7. Santiago G Miriuka
  8. Christophe Cazaux
  9. Jean-Sébastien Hoffmann
  10. Vanesa Gottifredi  Is a corresponding author
  1. Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Argentina
  2. Équipes Labellisées - La Ligue contre le Cancer, France
  3. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia, Argentina

Abstract

The levels of the cyclin-dependent kinase (CDK) inhibitor p21 are low in S phase and insufficient to inhibit CDKs. We show here that endogenous p21, instead of being residual, it is functional and necessary to preserve the genomic stability of unstressed cells. p21depletion slows down nascent DNA elongation, triggers permanent replication defects and promotes the instability of hard-to-replicate genomic regions, namely common fragile sites (CFS). The p21's PCNA interacting region (PIR), and not its CDK binding domain, is needed to prevent the replication defects and the genomic instability caused by p21 depletion. The alternative polymerase kappa is accountable for such defects as they were not observed after simultaneous depletion of both p21 and polymerase kappa. Hence, in CDK-independent manner, endogenous p21 prevents a type of genomic instability which is not triggered by endogenous DNA lesions but by a dysregulation in the DNA polymerase choice during genomic DNA synthesis.

Article and author information

Author details

  1. Sabrina F Mansilla

    Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  2. Agustina P Bertolin

    Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  3. Valérie Bergoglio

    Équipes Labellisées - La Ligue contre le Cancer, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Marie-Jeanne Pillaire

    Équipes Labellisées - La Ligue contre le Cancer, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Marina A González Besteiro

    Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  6. Carlos Luzzani

    Laboratorio de Investigaciones Aplicadas en Neurociencias, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia, Belén de Escobar, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  7. Santiago G Miriuka

    Laboratorio de Investigaciones Aplicadas en Neurociencias, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia, Belén de Escobar, Argentina
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2402-3920
  8. Christophe Cazaux

    Équipes Labellisées - La Ligue contre le Cancer, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Jean-Sébastien Hoffmann

    Équipes Labellisées - La Ligue contre le Cancer, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Vanesa Gottifredi

    Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires, Argentina
    For correspondence
    vgottifredi@leloir.org.ar
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9656-5951

Funding

National Institutes of Health (R03 TW008924)

  • Vanesa Gottifredi

Agencia Nacional de Promoción Científica y Tecnológica (PICT-2012-1371)

  • Vanesa Gottifredi

Agencia Nacional de Promoción Científica y Tecnológica (PICT-2013-1049)

  • Vanesa Gottifredi

Company of Biologists (Travel Fellowship)

  • Sabrina F Mansilla

Laboratoire d'Excellence Toulouse Cancer LABEX TOUCAN

  • Jean-Sébastien Hoffmann

La Ligue Nationale contra le Cancer

  • Jean-Sébastien Hoffmann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael R Botchan, University of California, Berkeley, United States

Version history

  1. Received: May 21, 2016
  2. Accepted: October 7, 2016
  3. Accepted Manuscript published: October 14, 2016 (version 1)
  4. Version of Record published: November 23, 2016 (version 2)

Copyright

© 2016, Mansilla et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,023
    views
  • 509
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sabrina F Mansilla
  2. Agustina P Bertolin
  3. Valérie Bergoglio
  4. Marie-Jeanne Pillaire
  5. Marina A González Besteiro
  6. Carlos Luzzani
  7. Santiago G Miriuka
  8. Christophe Cazaux
  9. Jean-Sébastien Hoffmann
  10. Vanesa Gottifredi
(2016)
Cyclin Kinase-independent role of p21CDKN1A in the promotion of nascent DNA elongation in unstressed cells
eLife 5:e18020.
https://doi.org/10.7554/eLife.18020

Share this article

https://doi.org/10.7554/eLife.18020

Further reading

    1. Cancer Biology
    2. Cell Biology
    Camille Dantzer, Justine Vaché ... Violaine Moreau
    Research Article

    Immune checkpoint inhibitors have produced encouraging results in cancer patients. However, the majority of ß-catenin-mutated tumors have been described as lacking immune infiltrates and resistant to immunotherapy. The mechanisms by which oncogenic ß-catenin affects immune surveillance remain unclear. Herein, we highlighted the involvement of ß-catenin in the regulation of the exosomal pathway and, by extension, in immune/cancer cell communication in hepatocellular carcinoma (HCC). We showed that mutated ß-catenin represses expression of SDC4 and RAB27A, two main actors in exosome biogenesis, in both liver cancer cell lines and HCC patient samples. Using nanoparticle tracking analysis and live-cell imaging, we further demonstrated that activated ß-catenin represses exosome release. Then, we demonstrated in 3D spheroid models that activation of β-catenin promotes a decrease in immune cell infiltration through a defect in exosome secretion. Taken together, our results provide the first evidence that oncogenic ß-catenin plays a key role in exosome biogenesis. Our study gives new insight into the impact of ß-catenin mutations on tumor microenvironment remodeling, which could lead to the development of new strategies to enhance immunotherapeutic response.

    1. Cancer Biology
    Fang Huang, Zhenwei Dai ... Yang Wang
    Research Article

    Aberrant alternative splicing is well-known to be closely associated with tumorigenesis of various cancers. However, the intricate mechanisms underlying breast cancer metastasis driven by deregulated splicing events remain largely unexplored. Here, we unveiled that RBM7 is decreased in lymph node and distant organ metastases of breast cancer as compared to primary lesions and low expression of RBM7 is correlated with the reduced disease-free survival of breast cancer patients. Breast cancer cells with RBM7 depletion exhibited an increased potential for lung metastasis compared to scramble control cells. The absence of RBM7 stimulated breast cancer cell migration, invasion, and angiogenesis. Mechanistically, RBM7 controlled the splicing switch of MFGE8, favoring the production of the predominant isoform of MFGE8, MFGE8-L. This resulted in the attenuation of STAT1 phosphorylation and alterations in cell adhesion molecules. MFGE8-L exerted an inhibitory effect on the migratory and invasive capability of breast cancer cells, while the truncated isoform MFGE8-S, which lack the second F5/8 type C domain had the opposite effect. In addition, RBM7 negatively regulates the NF-κB cascade and an NF-κB inhibitor could obstruct the increase in HUVEC tube formation caused by RBM7 silencing. Clinically, we noticed a positive correlation between RBM7 expression and MFGE8 exon7 inclusion in breast cancer tissues, providing new mechanistic insights for molecular-targeted therapy in combating breast cancer.