Cyclin Kinase-independent role of p21CDKN1A in the promotion of nascent DNA elongation in unstressed cells

  1. Sabrina F Mansilla
  2. Agustina P Bertolin
  3. Valérie Bergoglio
  4. Marie-Jeanne Pillaire
  5. Marina A González Besteiro
  6. Carlos Luzzani
  7. Santiago G Miriuka
  8. Christophe Cazaux
  9. Jean-Sébastien Hoffmann
  10. Vanesa Gottifredi  Is a corresponding author
  1. Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Argentina
  2. Équipes Labellisées - La Ligue contre le Cancer, France
  3. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia, Argentina

Abstract

The levels of the cyclin-dependent kinase (CDK) inhibitor p21 are low in S phase and insufficient to inhibit CDKs. We show here that endogenous p21, instead of being residual, it is functional and necessary to preserve the genomic stability of unstressed cells. p21depletion slows down nascent DNA elongation, triggers permanent replication defects and promotes the instability of hard-to-replicate genomic regions, namely common fragile sites (CFS). The p21's PCNA interacting region (PIR), and not its CDK binding domain, is needed to prevent the replication defects and the genomic instability caused by p21 depletion. The alternative polymerase kappa is accountable for such defects as they were not observed after simultaneous depletion of both p21 and polymerase kappa. Hence, in CDK-independent manner, endogenous p21 prevents a type of genomic instability which is not triggered by endogenous DNA lesions but by a dysregulation in the DNA polymerase choice during genomic DNA synthesis.

Article and author information

Author details

  1. Sabrina F Mansilla

    Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  2. Agustina P Bertolin

    Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  3. Valérie Bergoglio

    Équipes Labellisées - La Ligue contre le Cancer, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Marie-Jeanne Pillaire

    Équipes Labellisées - La Ligue contre le Cancer, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Marina A González Besteiro

    Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  6. Carlos Luzzani

    Laboratorio de Investigaciones Aplicadas en Neurociencias, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia, Belén de Escobar, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  7. Santiago G Miriuka

    Laboratorio de Investigaciones Aplicadas en Neurociencias, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia, Belén de Escobar, Argentina
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2402-3920
  8. Christophe Cazaux

    Équipes Labellisées - La Ligue contre le Cancer, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Jean-Sébastien Hoffmann

    Équipes Labellisées - La Ligue contre le Cancer, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Vanesa Gottifredi

    Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires, Argentina
    For correspondence
    vgottifredi@leloir.org.ar
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9656-5951

Funding

National Institutes of Health (R03 TW008924)

  • Vanesa Gottifredi

Agencia Nacional de Promoción Científica y Tecnológica (PICT-2012-1371)

  • Vanesa Gottifredi

Agencia Nacional de Promoción Científica y Tecnológica (PICT-2013-1049)

  • Vanesa Gottifredi

Company of Biologists (Travel Fellowship)

  • Sabrina F Mansilla

Laboratoire d'Excellence Toulouse Cancer LABEX TOUCAN

  • Jean-Sébastien Hoffmann

La Ligue Nationale contra le Cancer

  • Jean-Sébastien Hoffmann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael R Botchan, University of California, Berkeley, United States

Version history

  1. Received: May 21, 2016
  2. Accepted: October 7, 2016
  3. Accepted Manuscript published: October 14, 2016 (version 1)
  4. Version of Record published: November 23, 2016 (version 2)

Copyright

© 2016, Mansilla et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,977
    Page views
  • 503
    Downloads
  • 30
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sabrina F Mansilla
  2. Agustina P Bertolin
  3. Valérie Bergoglio
  4. Marie-Jeanne Pillaire
  5. Marina A González Besteiro
  6. Carlos Luzzani
  7. Santiago G Miriuka
  8. Christophe Cazaux
  9. Jean-Sébastien Hoffmann
  10. Vanesa Gottifredi
(2016)
Cyclin Kinase-independent role of p21CDKN1A in the promotion of nascent DNA elongation in unstressed cells
eLife 5:e18020.
https://doi.org/10.7554/eLife.18020

Share this article

https://doi.org/10.7554/eLife.18020

Further reading

    1. Cancer Biology
    Wanyoung Lim, Inwoo Hwang ... Sungsu Park
    Research Article

    Chemoresistance is a major cause of treatment failure in many cancers. However, the life cycle of cancer cells as they respond to and survive environmental and therapeutic stress is understudied. In this study, we utilized a microfluidic device to induce the development of doxorubicin-resistant (DOXR) cells from triple negative breast cancer (TNBC) cells within 11 days by generating gradients of DOX and medium. In vivo chemoresistant xenograft models, an unbiased genome-wide transcriptome analysis, and a patient data/tissue analysis all showed that chemoresistance arose from failed epigenetic control of the nuclear protein-1 (NUPR1)/histone deacetylase 11 (HDAC11) axis, and high NUPR1 expression correlated with poor clinical outcomes. These results suggest that the chip can rapidly induce resistant cells that increase tumor heterogeneity and chemoresistance, highlighting the need for further studies on the epigenetic control of the NUPR1/HDAC11 axis in TNBC.

    1. Cancer Biology
    2. Computational and Systems Biology
    Bingrui Li, Fernanda G Kugeratski, Raghu Kalluri
    Research Article

    Non-invasive early cancer diagnosis remains challenging due to the low sensitivity and specificity of current diagnostic approaches. Exosomes are membrane-bound nanovesicles secreted by all cells that contain DNA, RNA, and proteins that are representative of the parent cells. This property, along with the abundance of exosomes in biological fluids makes them compelling candidates as biomarkers. However, a rapid and flexible exosome-based diagnostic method to distinguish human cancers across cancer types in diverse biological fluids is yet to be defined. Here, we describe a novel machine learning-based computational method to distinguish cancers using a panel of proteins associated with exosomes. Employing datasets of exosome proteins from human cell lines, tissue, plasma, serum, and urine samples from a variety of cancers, we identify Clathrin Heavy Chain (CLTC), Ezrin, (EZR), Talin-1 (TLN1), Adenylyl cyclase-associated protein 1 (CAP1), and Moesin (MSN) as highly abundant universal biomarkers for exosomes and define three panels of pan-cancer exosome proteins that distinguish cancer exosomes from other exosomes and aid in classifying cancer subtypes employing random forest models. All the models using proteins from plasma, serum, or urine-derived exosomes yield AUROC scores higher than 0.91 and demonstrate superior performance compared to Support Vector Machine, K Nearest Neighbor Classifier and Gaussian Naive Bayes. This study provides a reliable protein biomarker signature associated with cancer exosomes with scalable machine learning capability for a sensitive and specific non-invasive method of cancer diagnosis.