1. Cancer Biology
  2. Cell Biology
Download icon

Cyclin Kinase-independent role of p21CDKN1A in the promotion of nascent DNA elongation in unstressed cells

  1. Sabrina F Mansilla
  2. Agustina P Bertolin
  3. Valérie Bergoglio
  4. Marie-Jeanne Pillaire
  5. Marina A González Besteiro
  6. Carlos Luzzani
  7. Santiago G Miriuka
  8. Christophe Cazaux
  9. Jean-Sébastien Hoffmann
  10. Vanesa Gottifredi  Is a corresponding author
  1. Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Argentina
  2. Équipes Labellisées - La Ligue contre le Cancer, France
  3. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia, Argentina
Research Article
  • Cited 24
  • Views 1,581
  • Annotations
Cite this article as: eLife 2016;5:e18020 doi: 10.7554/eLife.18020

Abstract

The levels of the cyclin-dependent kinase (CDK) inhibitor p21 are low in S phase and insufficient to inhibit CDKs. We show here that endogenous p21, instead of being residual, it is functional and necessary to preserve the genomic stability of unstressed cells. p21depletion slows down nascent DNA elongation, triggers permanent replication defects and promotes the instability of hard-to-replicate genomic regions, namely common fragile sites (CFS). The p21's PCNA interacting region (PIR), and not its CDK binding domain, is needed to prevent the replication defects and the genomic instability caused by p21 depletion. The alternative polymerase kappa is accountable for such defects as they were not observed after simultaneous depletion of both p21 and polymerase kappa. Hence, in CDK-independent manner, endogenous p21 prevents a type of genomic instability which is not triggered by endogenous DNA lesions but by a dysregulation in the DNA polymerase choice during genomic DNA synthesis.

Article and author information

Author details

  1. Sabrina F Mansilla

    Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  2. Agustina P Bertolin

    Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  3. Valérie Bergoglio

    Équipes Labellisées - La Ligue contre le Cancer, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Marie-Jeanne Pillaire

    Équipes Labellisées - La Ligue contre le Cancer, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Marina A González Besteiro

    Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  6. Carlos Luzzani

    Laboratorio de Investigaciones Aplicadas en Neurociencias, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia, Belén de Escobar, Argentina
    Competing interests
    The authors declare that no competing interests exist.
  7. Santiago G Miriuka

    Laboratorio de Investigaciones Aplicadas en Neurociencias, Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia, Belén de Escobar, Argentina
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2402-3920
  8. Christophe Cazaux

    Équipes Labellisées - La Ligue contre le Cancer, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Jean-Sébastien Hoffmann

    Équipes Labellisées - La Ligue contre le Cancer, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Vanesa Gottifredi

    Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires, Argentina
    For correspondence
    vgottifredi@leloir.org.ar
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9656-5951

Funding

National Institutes of Health (R03 TW008924)

  • Vanesa Gottifredi

Agencia Nacional de Promoción Científica y Tecnológica (PICT-2012-1371)

  • Vanesa Gottifredi

Agencia Nacional de Promoción Científica y Tecnológica (PICT-2013-1049)

  • Vanesa Gottifredi

Company of Biologists (Travel Fellowship)

  • Sabrina F Mansilla

Laboratoire d'Excellence Toulouse Cancer LABEX TOUCAN

  • Jean-Sébastien Hoffmann

La Ligue Nationale contra le Cancer

  • Jean-Sébastien Hoffmann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael R Botchan, University of California, Berkeley, United States

Publication history

  1. Received: May 21, 2016
  2. Accepted: October 7, 2016
  3. Accepted Manuscript published: October 14, 2016 (version 1)
  4. Version of Record published: November 23, 2016 (version 2)

Copyright

© 2016, Mansilla et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,581
    Page views
  • 459
    Downloads
  • 24
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cancer Biology
    2. Ecology
    Daniel Garcia-Souto et al.
    Short Report

    Clonally transmissible cancers are tumour lineages that are transmitted between individuals via the transfer of living cancer cells. In marine bivalves, leukaemia-like transmissible cancers, called hemic neoplasia (HN), have demonstrated the ability to infect individuals from different species. We performed whole-genome sequencing in eight warty venus clams that were diagnosed with HN, from two sampling points located more than 1000 nautical miles away in the Atlantic Ocean and the Mediterranean Sea Coasts of Spain. Mitochondrial genome sequencing analysis from neoplastic animals revealed the coexistence of haplotypes from two different clam species. Phylogenies estimated from mitochondrial and nuclear markers confirmed this leukaemia originated in striped venus clams and later transmitted to clams of the species warty venus, in which it survives as a contagious cancer. The analysis of mitochondrial and nuclear gene sequences supports all studied tumours belong to a single neoplastic lineage that spreads in the Seas of Southern Europe.

    1. Cancer Biology
    2. Cell Biology
    Alejandro La Greca et al.
    Research Article

    Estrogen (E2) and Progesterone (Pg), via their specific receptors (ERalpha and PR), are major determinants in the development and progression of endometrial carcinomas, However, their precise mechanism of action and the role of other transcription factors involved are not entirely clear. Using Ishikawa endometrial cancer cells, we report that E2 treatment exposes a set of progestin-dependent PR binding sites which include both E2 and progestin target genes. ChIP-seq results from hormone-treated cells revealed a non-random distribution of PAX2 binding in the vicinity of these estrogen-promoted PR sites. Altered expression of hormone regulated genes in PAX2 knockdown cells suggests a role for PAX2 in fine-tuning ERalpha and PR interplay in transcriptional regulation. Analysis of long-range interactions by Hi-C coupled with ATAC-seq data showed that these regions, that we call 'progestin control regions' (PgCRs), exhibited an open chromatin state even before hormone exposure and were non-randomly associated with regulated genes. Nearly 20% of genes potentially influenced by PgCRs were found to be altered during progression of endometrial cancer. Our findings suggest that endometrial response to progestins in differentiated endometrial tumor cells results in part from binding of PR together with PAX2 to accessible chromatin regions. What maintains these regions open remains to be studied.