PDZD7-MYO7A complex identified in enriched stereocilia membranes

  1. Clive P Morgan
  2. Jocelyn F Krey
  3. M'Hamed Grati
  4. Bo Zhao
  5. Shannon Fallen
  6. Abhiraami Kannan-Sundhari
  7. Xue Zhong Liu
  8. Dongseok Choi
  9. Ulrich Müller
  10. Peter G Barr-Gillespie  Is a corresponding author
  1. Oregon Health and Science University, United States
  2. University of Miami, United States
  3. The Scripps Research Institute, United States

Abstract

While more than 70 genes have been linked to deafness, most of which are expressed in mechanosensory hair cells of the inner ear, a challenge has been to link these genes into molecular pathways. One example is Myo7a (myosin VIIA), in which deafness mutations affect the development and function of the mechanically sensitive stereocilia of hair cells. We describe here a procedure for the isolation of low-abundance protein complexes from stereocilia membrane fractions. Using this procedure, combined with identification and quantitation of proteins with mass spectrometry, we demonstrate that MYO7A forms a complex with PDZD7, a paralog of USH1C and DFNB31. MYO7A and PDZD7 interact in tissue-culture cells, and co-localize to the ankle-link region of stereocilia in wild-type but not Myo7a mutant mice. Our data thus describe a new paradigm for the interrogation of low-abundance protein complexes in hair cell stereocilia and establish an unanticipated link between MYO7A and PDZD7.

Data availability

The following data sets were generated
    1. Barr-Gillespie
    2. PG
    (2016) D10 Stereocilia Membrane Enrichment
    Available at the PRIDE Archive (accession no. PXD004222).

Article and author information

Author details

  1. Clive P Morgan

    Oregon Hearing Research Center, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jocelyn F Krey

    Oregon Hearing Research Center, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. M'Hamed Grati

    Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Bo Zhao

    Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Shannon Fallen

    Oregon Hearing Research Center, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Abhiraami Kannan-Sundhari

    Department of Otolaryngology, Miller School of Medicine,, University of Miami, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xue Zhong Liu

    Department of Otolaryngology, Miller School of Medicine,, University of Miami, Miami, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Dongseok Choi

    OHSU-PSU School of Public Health, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ulrich Müller

    Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Peter G Barr-Gillespie

    Oregon Hearing Research Center, Oregon Health and Science University, Portland, United States
    For correspondence
    gillespp@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9787-5860

Funding

National Institute on Deafness and Other Communication Disorders (R01DC002368)

  • Peter G Barr-Gillespie

National Institute on Deafness and Other Communication Disorders (P30DC005983)

  • Peter G Barr-Gillespie

National Institute on Deafness and Other Communication Disorders (R01DC014427)

  • Ulrich Müller
  • Peter G Barr-Gillespie

National Institute on Deafness and Other Communication Disorders (R01DC005965)

  • Ulrich Müller

National Institute on Deafness and Other Communication Disorders (R01DC05575)

  • Xue Zhong Liu

National Institute on Deafness and Other Communication Disorders (R01DC012546)

  • Xue Zhong Liu

National Institute on Deafness and Other Communication Disorders (R01DC012115)

  • Xue Zhong Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled and euthanized according to a protocol (#IS00003292) that was approved by the institutional animal care and use committee (IACUC) of the Oregon Health & Science University.

Copyright

© 2016, Morgan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,432
    views
  • 502
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Clive P Morgan
  2. Jocelyn F Krey
  3. M'Hamed Grati
  4. Bo Zhao
  5. Shannon Fallen
  6. Abhiraami Kannan-Sundhari
  7. Xue Zhong Liu
  8. Dongseok Choi
  9. Ulrich Müller
  10. Peter G Barr-Gillespie
(2016)
PDZD7-MYO7A complex identified in enriched stereocilia membranes
eLife 5:e18312.
https://doi.org/10.7554/eLife.18312

Share this article

https://doi.org/10.7554/eLife.18312

Further reading

    1. Cell Biology
    Rachel Pudlowski, Lingyi Xu ... Jennifer T Wang
    Research Advance

    Centrioles have a unique, conserved architecture formed by three linked, ‘triplet’, microtubules arranged in ninefold symmetry. The mechanisms by which these triplet microtubules are formed remain unclear but likely involve the noncanonical tubulins delta-tubulin and epsilon-tubulin. Previously, we found that human cells lacking delta-tubulin or epsilon-tubulin form abnormal centrioles, characterized by an absence of triplet microtubules, lack of central core protein POC5, and a futile cycle of centriole formation and disintegration (Wang et al., 2017). Here, we show that human cells lacking either TEDC1 or TEDC2 have similar abnormalities. Using ultrastructure expansion microscopy, we observed that mutant centrioles elongate to the same length as control centrioles in G2 phase and fail to recruit central core scaffold proteins. Remarkably, mutant centrioles also have an expanded proximal region. During mitosis, these mutant centrioles further elongate before fragmenting and disintegrating. All four proteins physically interact and TEDC1 and TEDC2 can form a subcomplex in the absence of the tubulins, supporting an AlphaFold Multimer model of the tetramer. TEDC1 and TEDC2 localize to centrosomes and are mutually dependent on each other and on delta-tubulin and epsilon-tubulin for localization. Our results demonstrate that delta-tubulin, epsilon-tubulin, TEDC1, and TEDC2 function together to promote robust centriole architecture, laying the foundation for future studies on the mechanisms underlying the assembly of triplet microtubules and their interactions with centriole structure.

    1. Cancer Biology
    2. Cell Biology
    Zuzana Outla, Gizem Oyman-Eyrilmez ... Martin Gregor
    Research Article

    The most common primary malignancy of the liver, hepatocellular carcinoma (HCC), is a heterogeneous tumor entity with high metastatic potential and complex pathophysiology. Increasing evidence suggests that tissue mechanics plays a critical role in tumor onset and progression. Here, we show that plectin, a major cytoskeletal crosslinker protein, plays a crucial role in mechanical homeostasis and mechanosensitive oncogenic signaling that drives hepatocarcinogenesis. Our expression analyses revealed elevated plectin levels in liver tumors, which correlated with poor prognosis for HCC patients. Using autochthonous and orthotopic mouse models we demonstrated that genetic and pharmacological inactivation of plectin potently suppressed the initiation and growth of HCC. Moreover, plectin targeting potently inhibited the invasion potential of human HCC cells and reduced their metastatic outgrowth in the lung. Proteomic and phosphoproteomic profiling linked plectin-dependent disruption of cytoskeletal networks to attenuation of oncogenic FAK, MAPK/Erk, and PI3K/Akt signatures. Importantly, by combining cell line-based and murine HCC models, we show that plectin inhibitor plecstatin-1 (PST) is well-tolerated and potently inhibits HCC progression. In conclusion, our study demonstrates that plectin-controlled cytoarchitecture is a key determinant of HCC development and suggests that pharmacologically induced disruption of mechanical homeostasis may represent a new therapeutic strategy for HCC treatment.