BRAF activates PAX3 to control muscle precursor cell migration during forelimb muscle development
Abstract
Migration of skeletal muscle precursor cells is a key step during limb muscle development and depends on the activity of PAX3 and MET. Here, we demonstrate that BRAF serves a crucial function in formation of limb skeletal muscles during mouse embryogenesis downstream of MET and acts as a potent inducer of myoblast cell migration. We found that a fraction of BRAF accumulates in the nucleus after activation and endosomal transport to a perinuclear position. Mass spectrometry based screening for potential interaction partners revealed that BRAF interacts and phosphorylates PAX3. Mutation of BRAF dependent phosphorylation sites in PAX3 impaired the ability of PAX3 to promote migration of C2C12 myoblasts indicating that BRAF directly activates PAX3. Since PAX3 stimulates transcription of the Met gene we propose that MET signaling via BRAF fuels a positive feedback loop, which maintains high levels of PAX3 and MET activity required for limb muscle precursor cell migration.
Article and author information
Author details
Funding
Deutsche Forschungsgemeinschaft (SFB TRR81 TP02)
- Thomas Braun
LOEWE Center for Cell and Gene Therapy
- Thomas Braun
German Center for Cardiovascular Research
- Thomas Braun
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All procedures involving animals and their care were carried out in accordance with the guidelines for animal experiments at the Max-Planck-Institute for Heart and Lung Research, which conform to the Guide for the Care and Use of Laboratory Animals (NIH Publication No. 85-23, revised 1996) and the European Parliament Directive 2010/63/EU and the 22 September 2010 Council on the protection of animals. Animal experimentation was approved by the local Ethics committee for animal experiments at the Regierungspräsidium Darmstadt (Registration # B2/1015 „Herstellung transgener Mauslinien; Inaktivierung und Überexpression von Genen"). The animal house at the MPI-HLR is registered according to {section sign}11 German Animal Welfare Law.
Copyright
© 2016, Shin et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,523
- views
-
- 344
- downloads
-
- 16
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
Excessive mitochondrial fragmentation is associated with the pathologic mitochondrial dysfunction implicated in the pathogenesis of etiologically diverse diseases, including many neurodegenerative disorders. The integrated stress response (ISR) – comprising the four eIF2α kinases PERK, GCN2, PKR, and HRI – is a prominent stress-responsive signaling pathway that regulates mitochondrial morphology and function in response to diverse types of pathologic insult. This suggests that pharmacologic activation of the ISR represents a potential strategy to mitigate pathologic mitochondrial fragmentation associated with human disease. Here, we show that pharmacologic activation of the ISR kinases HRI or GCN2 promotes adaptive mitochondrial elongation and prevents mitochondrial fragmentation induced by the calcium ionophore ionomycin. Further, we show that pharmacologic activation of the ISR reduces mitochondrial fragmentation and restores basal mitochondrial morphology in patient fibroblasts expressing the pathogenic D414V variant of the pro-fusion mitochondrial GTPase MFN2 associated with neurological dysfunctions, including ataxia, optic atrophy, and sensorineural hearing loss. These results identify pharmacologic activation of ISR kinases as a potential strategy to prevent pathologic mitochondrial fragmentation induced by disease-relevant chemical and genetic insults, further motivating the pursuit of highly selective ISR kinase-activating compounds as a therapeutic strategy to mitigate mitochondrial dysfunction implicated in diverse human diseases.
-
- Cell Biology
Functional subpopulations of β-cells emerge to control pulsative insulin secretion in the pancreatic islets of mice through calcium oscillations.