BRAF activates PAX3 to control muscle precursor cell migration during forelimb muscle development

Abstract

Migration of skeletal muscle precursor cells is a key step during limb muscle development and depends on the activity of PAX3 and MET. Here, we demonstrate that BRAF serves a crucial function in formation of limb skeletal muscles during mouse embryogenesis downstream of MET and acts as a potent inducer of myoblast cell migration. We found that a fraction of BRAF accumulates in the nucleus after activation and endosomal transport to a perinuclear position. Mass spectrometry based screening for potential interaction partners revealed that BRAF interacts and phosphorylates PAX3. Mutation of BRAF dependent phosphorylation sites in PAX3 impaired the ability of PAX3 to promote migration of C2C12 myoblasts indicating that BRAF directly activates PAX3. Since PAX3 stimulates transcription of the Met gene we propose that MET signaling via BRAF fuels a positive feedback loop, which maintains high levels of PAX3 and MET activity required for limb muscle precursor cell migration.

Article and author information

Author details

  1. Jaeyoung Shin

    Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Shuichi Watanabe

    Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Soraya Hoelper

    Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Marcus Krüger

    Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Sawa Kostin

    Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1594-9476
  6. Jochen Pöling

    Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Thomas Kubin

    Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
    For correspondence
    thomas.kubin@mpi-bn.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas Braun

    Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
    For correspondence
    thomas.braun@mpi-bn.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6165-4804

Funding

Deutsche Forschungsgemeinschaft (SFB TRR81 TP02)

  • Thomas Braun

LOEWE Center for Cell and Gene Therapy

  • Thomas Braun

German Center for Cardiovascular Research

  • Thomas Braun

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving animals and their care were carried out in accordance with the guidelines for animal experiments at the Max-Planck-Institute for Heart and Lung Research, which conform to the Guide for the Care and Use of Laboratory Animals (NIH Publication No. 85-23, revised 1996) and the European Parliament Directive 2010/63/EU and the 22 September 2010 Council on the protection of animals. Animal experimentation was approved by the local Ethics committee for animal experiments at the Regierungspräsidium Darmstadt (Registration # B2/1015 „Herstellung transgener Mauslinien; Inaktivierung und Überexpression von Genen"). The animal house at the MPI-HLR is registered according to {section sign}11 German Animal Welfare Law.

Copyright

© 2016, Shin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,474
    views
  • 338
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jaeyoung Shin
  2. Shuichi Watanabe
  3. Soraya Hoelper
  4. Marcus Krüger
  5. Sawa Kostin
  6. Jochen Pöling
  7. Thomas Kubin
  8. Thomas Braun
(2016)
BRAF activates PAX3 to control muscle precursor cell migration during forelimb muscle development
eLife 5:e18351.
https://doi.org/10.7554/eLife.18351

Share this article

https://doi.org/10.7554/eLife.18351

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Armando Montoya-Garcia, Idaira M Guerrero-Fonseca ... Michael Schnoor
    Research Article

    Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.

    1. Cell Biology
    Parijat Biswas, Priyanka Roy ... Deepak Kumar Sinha
    Research Article

    The excessive cosolute densities in the intracellular fluid create a physicochemical condition called macromolecular crowding (MMC). Intracellular MMC entropically maintains the biochemical thermodynamic equilibria by favouring associative reactions while hindering transport processes. Rapid cell volume shrinkage during extracellular hypertonicity elevates the MMC and disrupts the equilibria, potentially ushering cell death. Consequently, cells actively counter the hypertonic stress through regulatory volume increase (RVI) and restore the MMC homeostasis. Here, we establish fluorescence anisotropy of EGFP as a reliable tool for studying cellular MMC and explore the spatiotemporal dynamics of MMC during cell volume instabilities under multiple conditions. Our studies reveal that the actin cytoskeleton enforces spatially varying MMC levels inside adhered cells. Within cell populations, MMC is uncorrelated with nuclear DNA content but anti-correlated with the cell spread area. Although different cell lines have statistically similar MMC distributions, their responses to extracellular hypertonicity vary. The intensity of the extracellular hypertonicity determines a cell's ability for RVI, which correlates with Nuclear Factor Kappa Beta (NFkB) activation. Pharmacological inhibition and knockdown experiments reveal that Tumour Necrosis Factor Receptor 1 (TNFR1) initiates the hypertonicity induced NFkB signalling and RVI. At severe hypertonicities, the elevated MMC amplifies cytoplasmic microviscosity and hinders Receptor Interacting Protein Kinase 1 (RIPK1) recruitment at the TNFR1 complex, incapacitating the TNFR1-NFkB signalling and consequently, RVI. Together, our studies unveil the involvement of TNFR1-NFkB signalling in modulating RVI and demonstrate the pivotal role of MMC in determining cellular osmoadaptability.