1. Biochemistry and Chemical Biology
Download icon

The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction

Short Report
  • Cited 68
  • Views 4,128
  • Annotations
Cite this article as: eLife 2016;5:e18357 doi: 10.7554/eLife.18357

Abstract

In response to proteasome dysfunction, mammalian cells upregulate proteasome gene expression by activating Nrf1. Nrf1 is an endoplasmic reticulum-resident transcription factor that is continually retrotranslocated and degraded by the proteasome. Upon proteasome inhibition, Nrf1 escapes degradation and is cleaved to become active. However, the processing enzyme for Nrf1 remains obscure. Here we show that the aspartyl protease DNA-damage inducible 1 homolog 2 (DDI2) is required to cleave and activate Nrf1. Deletion of DDI2 reduced the cleaved form of Nrf1 and increased the full-length cytosolic form of Nrf1, resulting in poor upregulation of proteasomes in response to proteasome inhibition. These defects were restored by adding back wild-type DDI2 but not protease-defective DDI2. Our results provide a clue for blocking compensatory proteasome synthesis to improve cancer therapies targeting proteasomes.

Article and author information

Author details

  1. Shun Koizumi

    Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Taro Irie

    Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Shoshiro Hirayama

    Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Yasuyuki Sakurai

    Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Hideki Yashiroda

    Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Isao Naguro

    Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Hidenori Ichijo

    Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Jun Hamazaki

    Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Shigeo Murata

    Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
    For correspondence
    smurata@mol.f.u-tokyo.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3177-3503

Funding

Japan Society for the Promotion of Science (25221102)

  • Shigeo Murata

Japan Society for the Promotion of Science (26000014)

  • Shigeo Murata

Takeda Science Foundation

  • Shigeo Murata

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ivan Dikic, Goethe University Medical School, Germany

Publication history

  1. Received: May 31, 2016
  2. Accepted: August 12, 2016
  3. Accepted Manuscript published: August 16, 2016 (version 1)
  4. Accepted Manuscript updated: August 19, 2016 (version 2)
  5. Version of Record published: August 26, 2016 (version 3)

Copyright

© 2016, Koizumi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,128
    Page views
  • 958
    Downloads
  • 68
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    Ameya S Walimbe et al.
    Research Article

    Matriglycan [-GlcA-β1,3-Xyl-α1,3-]n serves as a scaffold in many tissues for extracellular matrix proteins containing laminin-G domains including laminin, agrin, and perlecan. Like-acetylglucosaminyltransferase-1 (LARGE1) synthesizes and extends matriglycan on α-dystroglycan (α-DG) during skeletal muscle differentiation and regeneration; however, the mechanisms which regulate matriglycan elongation are unknown. Here, we show that Protein O-Mannose Kinase (POMK), which phosphorylates mannose of core M3 (GalNac-β1,3-GlcNac-β1,4-Man) preceding matriglycan synthesis, is required for LARGE1-mediated generation of full-length matriglycan on α-DG (~150 kDa). In the absence of Pomk in mouse skeletal muscle, LARGE1 synthesizes a very short matriglycan resulting in a ~90 kDa α-DG which binds laminin but cannot prevent eccentric contraction-induced force loss or muscle pathology. Solution NMR spectroscopy studies demonstrate that LARGE1 directly interacts with core M3 and binds preferentially to the phosphorylated form. Collectively, our study demonstrates that phosphorylation of core M3 by POMK enables LARGE1 to elongate matriglycan on α-DG, thereby preventing muscular dystrophy.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Roman O Fedoryshchak et al.
    Research Article

    PPP-family phosphatases such as PP1 have little intrinsic specificity. Cofactors can target PP1 to substrates or subcellular locations, but it remains unclear how they might confer sequence-specificity on PP1. The cytoskeletal regulator Phactr1 is a neuronally-enriched PP1 cofactor that is controlled by G-actin. Structural analysis showed that Phactr1 binding remodels PP1's hydrophobic groove, creating a new composite surface adjacent to the catalytic site. Using phosphoproteomics, we identified mouse fibroblast and neuronal Phactr1/PP1 substrates, which include cytoskeletal components and regulators. We determined high-resolution structures of Phactr1/PP1 bound to the dephosphorylated forms of its substrates IRSp53 and spectrin aII. Inversion of the phosphate in these holoenzyme-product complexes supports the proposed PPP-family catalytic mechanism. Substrate sequences C-terminal to the dephosphorylation site make intimate contacts with the composite Phactr1/PP1 surface, which are required for efficient dephosphorylation. Sequence specificity explains why Phactr1/PP1 exhibits orders-of-magnitude enhanced reactivity towards its substrates, compared to apo-PP1 or other PP1 holoenzymes.